Skip to main content
Log in

Minimum-error discrimination between two sets of similarity-transformed quantum states

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Using the equality form of the necessary and sufficient conditions introduced in Jafarizadeh (Phys Rev A 84:012102 (9 pp), 2011), minimum error discrimination between states of the two sets of equiprobable similarity transformed quantum qudit states is investigated. In the case that the unitary operators describing the similarity transformations are generating sets of two irreducible representations and the states fulfill a certain constraint, the optimal set of measurements and the corresponding maximum success probability of discrimination are determined in closed form. In the cases that they are generating sets of reducible representations, there exist no closed-form formula in general, but the procedure can be applied properly in each case provided that the states obey some constraints. Finally, we give the maximum success probability of discrimination and optimal measurement operators for some important examples of mixed quantum states, such as generalized Bloch sphere m-qubit states, qubit states and their three special cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Helstrom, C.W.: Quantum Detection and Estimation Theory. Academic, New York (1976)

    Google Scholar 

  2. Holevo, A.: Probabilistic and Statistical Aspects of Quantum Theory. North-Holland, Amsterdam (1982)

    MATH  Google Scholar 

  3. Eldar, Y.C., Megretski, A., Verghese, G.C.: Designing optimal quantum detectors via semidefinite programming. IEEE Trans. Inf. Theory 49, 1007–1012 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. Barnett, S.M., Croke, S.: On the conditions for discrimination between quantum states with minimum error. J. Phys. A Math. Theor. 42, 062001(4 pp) (2009)

  5. Barnett, S.M., Croke, S.: Quantum state discrimination. Adv. Opt. Photon. 1, 238–278 (2009)

    Article  Google Scholar 

  6. Jafarizadeh, M.A., Mazhari, Y., Aali, M.: The minimum-error discrimination via Helstrom family of ensembles and convex optimization. Quant. Inf. Process. 10, 155–176 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Hwang, W.-Y., Bae, J.: Minimum-error state discrimination constrained by the no-signaling principle. J. Math. Phys. 51, 0222022 (11 pp) (2010)

    Google Scholar 

  8. Assalini, A., Cariolaro, G., Pierobon, G.: Efficient optimal minimum error discrimination of symmetric quantum states. Phys. Rev. A 81, 012315 (4 pp) (2010)

    Article  ADS  Google Scholar 

  9. Ivanovic, I.D.: How to differentiate between non-orthogonal states. Phys. Lett. A 123, 257–259 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  10. Dieks, D.: Overlap and distinguishability of quantum states. Phys. Lett. A 126, 303–306 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  11. Peres, A., Terno, D.R.: Optimal distinction between non-orthogonal quantum states. J. Phys. A 31, 7105–7112 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. Jaeger, G., Shimony, A.: Optimal distinction between two non-orthogonal quantum states. Phys. Lett. A 197, 83–87 (1995)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. Chefles, A.: Unambiguous discrimination between linearly independent quantum states. Phys. Lett. A 239, 339–347 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. Jafarizadeh, M.A., Rezaei, M., Karimi, N., Amiri, A.R.: Optimal unambiguous discrimination of quantum states. Phys. Rev. A 77, 042314 (12 pp) (2008)

    Google Scholar 

  15. Kimura, G., Miyadera, T., Imai, H.: Optimal state discrimination in general probabilistic theories. Phys. Rev. A 79, 062306 (9 pp) (2009)

    Google Scholar 

  16. Jafarizadeh, M.A., Sufiani, R., Mazhari Khiavi, Y.: Minimum error discrimination between similarity-transformed quantum states. Phys. Rev. A 84, 012102 (9 pp) (2011)

    Google Scholar 

  17. Joshi, A.W.: Elements of group theory for physicists. New Age International (P) Limited, Publishers, New Delhi (1997)

    Google Scholar 

  18. James, G., Liebeck, M.W.: Representations and Characters of Groups. Cambridge University Press, NY (2001)

    Book  MATH  Google Scholar 

  19. Andersson, E., Barnett, S.M., Gilson, C.R., Hunter, K.: Minimum-error discrimination between three mirror-symmetric states. Phys. Rev. A 65, 052308–4 (2002)

    Article  ADS  Google Scholar 

  20. Samsonov, B.F.: Minimum error discrimination problem for pure qubit states. Phys. Rev. A 80, 052305–11 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  21. Ježek, M., Řeháček, J., Fiurášek, J.: Finding optimal strategies for minimum-error quantum-state discrimination. Phys. Rev. A 65, 060301–4 (2002)

    Article  ADS  Google Scholar 

  22. Weinberg, S.: The Quantum Theory of Fields I. Cambridge University Press, NY (1995)

    Book  Google Scholar 

  23. Jafarizadeh, M.A., Sufiani, R.: Bell-state diagonal entanglement witnesses for relativistic and nonrelativistic multispinor systems in arbitrary dimensions. Phys. Rev. A 77, 012105 (25 pp) (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Jafarizadeh.

Appendix

Appendix

Here, we want to calculate maximal success probability given in Eq. (93). To this aim, first we express Eq. (13) in terms of the Bloch vectors components as

$$\begin{aligned}&\eta bn_{i}-\eta ^{\prime }b^{\prime }n^{\prime }_{i}=(p_{opt}-\eta ^{\prime })m^{\prime }_{i}-(p_{opt}-\eta )m_{i}\end{aligned}$$
(95)
$$\begin{aligned}&2^{m}\beta _{i}=\eta bn_{i}+(p_{opt}-\eta )m_{i} \end{aligned}$$
(96)

for any \(i\in S_{I}\cap S^{\prime }_{I}\). From Eqs. (95) and (88), it is seen that for any \(i\in S_{I}\cap S^{\prime }_{I}\), the signs of \(\eta bn_{i}-\eta ^{\prime }b^{\prime }n^{\prime }_{i}\) and \(m_{i}\) are opposite. In other words, if restrictions of \(\hat{n}, \hat{n}^{\prime }, \hat{m}\) and \(\hat{m}^{\prime }\) to the subspace corresponding to the index set \(S_{I}\cap S^{\prime }_{I}\) are denoted by \(\vec {n}_{0}, \vec {n}^{\prime }_{0}, \vec {m}_{0}\) and \(\vec {m}^{\prime }_{0}\) respectively, then the vectors \(\eta b\vec {n}_{0}-\eta ^{\prime }b^{\prime }\vec {n}^{\prime }_{0}\) and \(\vec {m}_{0}\) point in the opposite directions and we can write

$$\begin{aligned} \vec {m}_{0}=-\sqrt{\sum _{i\in S_{I}\cap S^{\prime }_{I}}(m_{i})^{2}}\frac{\eta b\vec {n}_{0}-\eta ^{\prime }b^{\prime }\vec {n}^{\prime }_{0}}{|\eta b\vec {n}_{0}-\eta ^{\prime }b^{\prime }\vec {n}^{\prime }_{0}|}. \end{aligned}$$
(97)

Therefore, Eq. (96) takes the following vectorial form

$$\begin{aligned} 2^{m}\vec {\beta }=\eta b\vec {n}_{0}-(p_{opt}-\eta )\sqrt{\sum _{i\in S_{I}\cap S^{\prime }_{I}}(m_{i})^{2}}\frac{\eta b\vec {n}_{0}-\eta ^{\prime }b^{\prime }\vec {n}^{\prime }_{0}}{|\eta b\vec {n}_{0}-\eta ^{\prime }b^{\prime }\vec {n}^{\prime }_{0}|} \end{aligned}$$
(98)

Eqs. (88), (97) and (98) show that the vectors \(\vec {n}_{0}, \vec {n}^{\prime }_{0}, \vec {\beta }, \vec {m}_{0}\) and \(\vec {m}^{\prime }_{0}\) are coplanar. Next, to simplify the algebra, we choose an orthogonal coordinate system in the subspace corresponding to the index set \(S_{I}\cap S^{\prime }_{I}\) in which the plane of \(\vec {n}_{0}\) and \(\vec {n}^{\prime }_{0}\) coincides with the plane defined by an arbitrary pair of coordinate axes. Also, \(\vec {n}_{0}\) points toward the positive direction of one axis of the pair. Let us denote by \(n^{\prime }_{0}, \beta _{0}, m_{0}\) and \(m^{\prime }_{0}\) the components of \(\vec {n}^{\prime }_{0}, \vec {\beta }, \vec {m}_{0}\) and \(\vec {m}^{\prime }_{0}\) along an axis of the pair lying in the direction of \(\vec {n}_{0}\) and by \(n^{\prime }_{1}, \beta _{1}, m_{1}\) and \(m^{\prime }_{1}\) their components along another axis, respectively. In the considered coordinate system, Eq. (88) and the third relations of Eqs. (91) and (92) are written as

$$\begin{aligned} \mu m_{0}&+ (1-\mu )m^{\prime }_{0}=0 \nonumber \\ \mu m_{1}&+ (1-\mu )m^{\prime }_{1}=0\end{aligned}$$
(99)
$$\begin{aligned} m_{0}&= \frac{2^{m}\beta _{0}-\eta bn_{0}}{p_{opt}-\eta }, \nonumber \\ m_{1}&= \frac{2^{m}\beta _{1}}{p_{opt}-\eta },\nonumber \\ m^{\prime }_{0}&= \frac{2^{m}\beta _{0}-\eta ^{\prime }b^{\prime }n^{\prime }_{0}}{p_{opt}-\eta ^{\prime }},\nonumber \\ m^{\prime }_{1}&= \frac{2^{m}\beta _{1}-\eta ^{\prime }b^{\prime }n^{\prime }_{1}}{p_{opt}-\eta ^{\prime }}, \end{aligned}$$
(100)

where we have introduced \(\mu =\sum ^{n}_{j=1}\lambda _{j}\). We square both sides of the first two relations of Eqs. (91) and (92), then sum up over \(i\) and use the fact that \(\hat{n}, \hat{n}^{\prime }, \hat{m}\) and \(\hat{m}^{\prime }\) are unit vectors, to obtain

$$\begin{aligned} 1-m^{2}_{0}-m^{2}_{1}&= \frac{\eta ^{2}b^{2}}{(p_{opt}-\eta )^{2}}(1-n^{2}_{0}) \\ 1-m^{\prime 2}_{0}-m^{\prime 2}_{1}&= \frac{\eta ^{\prime 2}b^{\prime 2}}{\big (p_{opt}-\eta ^{\prime }\big )^{2}}\big (1-n^{\prime 2}_{0}-n^{\prime 2}_{1}\big )\nonumber \end{aligned}$$
(101)

Finally, by composing Eqs. (99)–(101) we attain to Eq. (93) for \(p_{opt}\).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jafarizadeh, M.A., Khiavi, Y.M. & Kourbolagh, Y.A. Minimum-error discrimination between two sets of similarity-transformed quantum states. Quantum Inf Process 12, 2385–2404 (2013). https://doi.org/10.1007/s11128-013-0527-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-013-0527-7

Keywords

Navigation