Skip to main content
Log in

Polar quantum channel coding with optical multi-qubit entangling gates for capacity-achieving channels

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We demonstrate a fashion of quantum channel combining and splitting, called polar quantum channel coding, to generate a quantum bit (qubit) sequence that achieves the symmetric capacity for any given binary input discrete quantum channels. The present capacity is achievable subject to input of arbitrary qubits with equal probability. The polarizing quantum channels can be well-conditioned for quantum error-correction coding, which transmits partially quantum data through some channels at rate one with the symmetric capacity near one but at rate zero through others.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shannon C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 (1948)

    MathSciNet  MATH  Google Scholar 

  2. Nielsen M., Chuang I.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  3. Deng F.G., Long G.L.: Secure direct communication with a quantum one-time pad. Phys. Rev. A 69(5), 052319-1–052319-4 (2004)

    Article  ADS  Google Scholar 

  4. Zeng G., Keitel C.H.: Arbitrated quantum-signature scheme. Phys. Rev. A 65(4), 0423121–0423126 (2002)

    Article  MathSciNet  Google Scholar 

  5. Zeng G.: Reply to comment on arbitrated quantum-signature scheme. Phys. Rev. A 78(1), 016301–016305 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  6. Guo Y., Lee M.H., Zeng G.: Quantum codes based on fast pauli block transforms in the finite field. Quantum Inf. Process. 8(4), 361–378 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Guo Y., Lee M.H.: Fast quantum codes based on Pauli block Jacket matrices. Quantum Inf. Process. 9(5), 663–666 (2010)

    Article  MathSciNet  Google Scholar 

  8. Devetak I.: The private classical capacity and quantum capacity of a quantum channel. IEEE Trans. Inf. Theory 51(1), 44–55 (2005)

    Article  MathSciNet  Google Scholar 

  9. Jiang L., He G., Xiong J., Zeng G.H.: Quantum anonymous voting for continuous variables. Phys. Rev. A 85(4), 0423091–0423096 (2012)

    Article  Google Scholar 

  10. Calderbank A.R., Rains E.M., Shor P.W. et al.: Quantum error correction and orthogonal geometry. Phys. Rev. Lett. 78(3), 405–408 (1997)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. Li Y., Dumer I., Pryadko L.P.: Clustered error correction of codeword-stabilized quantum codes. Phys. Rev. Lett. 104(19), 1905011–1905014 (2010)

    Article  MathSciNet  Google Scholar 

  12. MacKay D.J.C., Mitchison G.J., McFadden P.L.: Sparse-graph codes for quantum error correction. IEEE Trans. Inf. Theory 50(10), 2315–2330 (2004)

    Article  MathSciNet  Google Scholar 

  13. Aggarwal V., Calderbank A.R.: Boolean functions, projection operators, and quantum error correcting codes. IEEE Trans. Inf. Theory 54(4), 1700–1707 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ocko S.A., Chen X., Zeng B. et al.: Quantum codes give counterexamples to the unique preimage conjecture of the N-Representability problem. Phys. Rev. Lett. 106(11), 1105011–1105014 (2011)

    Article  Google Scholar 

  15. Chen, J., Ji, Z., Wei, Z., et al.: Correlations in excited states of local hamiltonians. Phys. Rev. A 85(4), 0403031–0403034 (2012)

    Google Scholar 

  16. Grassl M., Shor P., Smith G. et al.: Generalized concatenated quantum codes. Phys. Rev. A 79(5), 0503061–0503064 (2009)

    Article  MathSciNet  Google Scholar 

  17. Bombin, H., Martin-Delgado, M.A.: Topological quantum distillation. Phys. Rev. Lett. 97(18), 1805011–1805014 (2006)

    Google Scholar 

  18. Viyuela O., Rivas A., Martin-Delgado M.A.: Generalized toric codes coupled to thermal baths. New J. Phys. 14, 033044-1–033044-32 (2012)

    Article  ADS  Google Scholar 

  19. Wilde M.M., Guha S., Tan S.H. et al.: Explicit Capacity-Achieving Receivers for Optical Communication and Quantum Reading. ISIT, Boston (2012)

    Google Scholar 

  20. Arikan E.: Channel polarization: a method for constructing capacity-achieving codes for symmetric binary-input memoryless channels. IEEE Trans. Inf. Theory 55(7), 3051–3073 (2009)

    Article  MathSciNet  Google Scholar 

  21. Bhattacharyya A.: A measure of divergence between two statistical populations defined by their probability distributions. Bull. Calcutta Math. Soc. 35, 99–110 (1943)

    MathSciNet  MATH  Google Scholar 

  22. Zeng G., Lee M.H.: A generalized reverse block jacket transform. IEEE Trans. Circuits Syst. 55(6), 1589–1600 (2008)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Guo.

Additional information

This work was supported by the National Natural Science Foundation of China (60902044, 61172184), the New Century Excellent Talents in University, China (NCET-11-0510), and partly by the World Class University R32-2010-000-20014-0 NRF, and Fundamental Research 2010-0020942 NRF, Korea.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, Y., Lee, M.H. & Zeng, G. Polar quantum channel coding with optical multi-qubit entangling gates for capacity-achieving channels. Quantum Inf Process 12, 1659–1676 (2013). https://doi.org/10.1007/s11128-012-0478-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-012-0478-4

Keywords

Navigation