Skip to main content
Log in

Efficient quantum private comparison employing single photons and collective detection

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Two efficient quantum private comparison (QPC) protocols are proposed, employing single photons and collective detection. In the proposed protocols, two distrustful parties (Alice and Bob) compare the equivalence of information with the help of a semi-honest third party (TP). Utilizing collective detection, the cost of practical realization is reduced greatly. In the first protocol, TP gains the result of the comparison. While in the second protocol, TP cannot get the comparison result. In both of our protocols, Alice and Bob only need be equipped with unitary operation machines, such as phase plates. So Alice and Bob need not to have the expensive quantum devices, such as qubit generating machine, quantum memory machine and quantum measuring machine. Security of the protocols is ensured by theorems on quantum operation discrimination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G.: Quantum cryptography: public-key distribution and coin tossing. In: Proc. IEEE International Conference on Computers, Systems and Signal, Bangalore, India, pp. 175–179 (1984)

  2. Ekert A.K.: Quantum cryptography based on Bell theorem. Phys. Rev. Lett. 67, 661–663 (1991)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Bennett C.H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68, 3121–3124 (1992)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. Long G., Liu X.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65, 032302 (2002)

    Article  ADS  Google Scholar 

  5. Jackson D.J., Hockney G.M.: Securing QKD links in the full Hilbert space. Quantum Inf. Process. 4, 35–47 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Brandt H.E.: Unambiguous state discrimination in quantum key distribution. Quantum Inf. Process. 4, 387–398 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  7. El Allati A., El Baz M., Hassouni Y.: Quantum key distribution via tripartite coherent states. Quantum Inf. Process. 10, 589–602 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Shih H., Lee K., Hwang T.: New efficient three-party quantum key distribution protocols. IEEE J. Sel. Top. Quant. Electron. 15, 1602–1606 (2009)

    Article  Google Scholar 

  9. Gao F., Qin S.J., Guo F.Z., Wen Q.Y.: Dense-coding attack on three-party quantum key distribution protocols. IEEE J. Quant. Electron. 47, 630–635 (2011)

    Article  ADS  Google Scholar 

  10. Liu B., Gao F., Wen Q.Y.: Single-photon multiparty quantum cryptographic protocols with collective detection. IEEE J. Quant. Electron. 47, 1383–1390 (2011)

    Article  ADS  Google Scholar 

  11. Nayak A.: Bit-commitment-based quantum coin flipping. Phys. Rev. A 67, 012304–012314 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  12. Barrett J., Massar S.: Quantum coin tossing and bit-string generation in the presence of noise. Phys. Rev. A 69, 022322–022327 (2004)

    Article  ADS  Google Scholar 

  13. Berlín G., Brassard G., Bussières F., Godbout N.: Fair loss-tolerant quantum coin flipping. Phys. Rev. A 80, 062321–062331 (2009)

    Article  ADS  Google Scholar 

  14. Cleve R., Gottesman D., Lo H.-K.: How to share a quantum secret. Phys. Rev. Lett. 83, 648–651 (1999)

    Article  ADS  Google Scholar 

  15. Hillery M., Buzěk V., Berthiaume A.: Quantum secret sharing. Phys. Rev. A 59, 1829–1834 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  16. Karlsson A., Koashi M., Imoto N.: Quantum entanglement for secret sharing and secret splitting. Phys. Rev. A 59, 162–168 (1999)

    Article  ADS  Google Scholar 

  17. Qin S.J., Gao F., Wen Q.Y., Zhu F.C.: Improving the security of multiparty quantum secret sharing against an attack with a fake signal. Phys. Lett. A 357, 101–103 (2006)

    Article  ADS  MATH  Google Scholar 

  18. Yang Y., Wang Y., Chai H., Teng Y., Zhang H.: Member expansion in quantum (t,n) threshold secret sharing schemes. Opt. Commun. 284, 3479–3482 (2011)

    Article  ADS  Google Scholar 

  19. Li Q., Long D.Y., Chan W.H., Qiu D.W.: Sharing a quantum secret without a trusted party. Quantum Inf. Process. 10, 97–106 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Shi R.H., Huang L.S., Yang W., Zhong H.: Asymmetric multi-party quantum state sharing of an arbitrary m-qubit state. Quantum Inf. Process. 10, 53–61 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Jia H.Y., Wen Q.Y., Song T.T., Gao F.: Quantum protocol for millionaire problem. Opt. Commun. 284, 545–549 (2011)

    Article  ADS  Google Scholar 

  22. Yao, A.C.: Protocols for secure computations. In: Proceedings of 23rd IEEE Symposium on Foundations of Computer Science (FOCS 82), Washington, DC, USA, p. 160 (1982)

  23. Boudot F., Schoenmakers B., Traore J.: A fair and efficient solution to the socialist millionaires problem. Discr. Appl. Math. (Special Issue on Coding and Cryptology) 111(1–2), 23–36 (2001)

    MathSciNet  MATH  Google Scholar 

  24. Lo H.K.: Insecurity of quantum secure computations. Phys. Rev. A 56(2), 1154–1162 (1997)

    Article  ADS  Google Scholar 

  25. Yang Y.G., Wen Q.Y.: An efficient two-party quantum private comparison protocol with decoy photons and two-photon entanglement. J. Phys. A-Math. Theor. 42, 055305 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  26. Yang Y.G., Wen Q.Y.: An efficient two-party quantum private comparison protocol with decoy photons and two-photon entanglement (vol. 42, 055305, 2009). J. Phys. A-Math. Theor. 43, 209801 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  27. Yang Y.G., Cao W.F., Wen Q.Y.: Secure quantum private comparison. Phsy. Scripta 80, 065002 (2009)

    Article  ADS  Google Scholar 

  28. Chen X.B., Xu G., Niu X.X., Wen Q.Y., Yang Y.X.: An efficient protocol for the private comparison of equal information based on the triplet entangled state and single-particle measurement. Opt. Commun. 283, 1161–1165 (2009)

    Google Scholar 

  29. Lin J., Tseng H.Y., Hwang T.: Intercept-resend attacks on Chen et al.’s quantum private comparison protocol and the improvements. Opt. Commun. 284, 2212–2214 (2011)

    Google Scholar 

  30. Liu W., Wang Y.B., Jiang Z.T.: An efficient protocol for the quantum private comparison of equality with W state. Opt. Commun. 284, 3160–3163 (2011)

    Article  ADS  Google Scholar 

  31. Tseng, H.Y., Lin, J., Hwang, T.: New quantum private comparison protocol using EPR pairs. Quantum Inf. Process. doi:10.1007/s11128-011-0251-0 (2011)

  32. Scherpelz P., Resch R., Berryrieser D., Lynn T.W.: Entanglement-secured single-qubit quantum secret sharing. Phys. Rev. A 84, 032303 (2011)

    Article  ADS  Google Scholar 

  33. Wang G.M., Ying M.S.: Unambiguous discrimination among quantum operations. Phys. Rew. A 73, 042301 (2006)

    Article  ADS  Google Scholar 

  34. D’Ariano M.G., Lo Presti P., Paris M.G.A.: Using entanglement improves the precision of quantum measurements. Phys. Rev. Lett. 87, 270404 (2001)

    Article  Google Scholar 

  35. Gao F., Qin S.J., Wen Q.Y.: A simple participant attack on the Bradler-Dusek protocol. Quantum Inf. Comput. 7, 329 (2007)

    MathSciNet  MATH  Google Scholar 

  36. Gisin N., Fasel S., Kraus B., Zbinden H., Ribordy G.: Trojan-horse attacks on quantum-key-distribution systems. Phys. Rev. A 73, 022320 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, B., Gao, F., Jia, Hy. et al. Efficient quantum private comparison employing single photons and collective detection. Quantum Inf Process 12, 887–897 (2013). https://doi.org/10.1007/s11128-012-0439-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-012-0439-y

Keywords

Navigation