Skip to main content
Log in

Quantum information transmission

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We present a scheme of quantum information transmission, which transmits the quantum information contained in a single qubit via the quantum correlation shared by two parties (a two-qubit channel), whose quantum discord is non-zero. We demonstrate that quantum correlation, which may have no entanglement, is sufficient to transmit the information needed to reconstruct a quantum state. When the correlation matrix of the two-qubit channel is of full rank (rank three), the information of the qubit (in either a mixed state or a pure state) can be transmitted. The quantum discord of a channel with rank larger than or equal to three is always non-zero. Therefore, non-zero quantum discord is also necessary for our quantum information transmission protocol. The scheme may be useful in remote state tomography and remote state preparation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Nielsen M.A., Chuang I.L.: Quantum Computation and Information. Cambridge University, Cambridge (2000)

    MATH  Google Scholar 

  2. Kok P. et al.: Linear optical quantum computing with photonic qubits. Rev. Mod. Phys. 79, 135–174 (2007)

    Article  ADS  Google Scholar 

  3. Caves C.M.: Quantum-mechanical noise in an interferometer. Phys. Rev. D 23, 1693–1708 (1981)

    Article  ADS  Google Scholar 

  4. Boto A.N. et al.: Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit. Phys. Rev. Lett. 85, 2733–2736 (2000)

    Article  ADS  Google Scholar 

  5. D’Angelo M. et al.: Identifying entanglement using quantum ghost interference and imaging. Phys. Rev. Lett. 92, 233601 (2004)

    Article  ADS  Google Scholar 

  6. Valencia A. et al.: Two-photon imaging with thermal light. Phys. Rev. Lett. 94, 063601 (2005)

    Article  ADS  Google Scholar 

  7. Gatti A. et al.: Ghost imaging with thermal light: comparing entanglement and classical correlation. Phys. Rev. Lett. 93, 093602 (2004)

    Article  ADS  Google Scholar 

  8. Shapiro J.H.: Computational ghost imaging. Phys. Rev. A 78, 061802(R) (2008)

    ADS  Google Scholar 

  9. Breigel H.-J. et al.: Quantum repeaters: the role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932–5935 (1998)

    Article  ADS  Google Scholar 

  10. Duan L.M., Lukin M.D., Cirac J.L., Zoller P.: Long-distance quantum communication with atomic ensembles and linear optics. Nature (London) 414, 413–418 (2001)

    Article  ADS  Google Scholar 

  11. Natori S.: Why quantum steganography can be stronger than classical steganography. Topics Appl. Phys. 102, 235–240 (2006)

    Article  MathSciNet  Google Scholar 

  12. Shah B.A., Brun T.A.: Quantum steganography. Phys. Rev. A 83, 022310 (2011)

    Article  ADS  Google Scholar 

  13. Ollivier H., Zurek W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001)

    Article  ADS  Google Scholar 

  14. Modi K., Paterek T., Son W., Vedral V., Williamson M.: Unified view of quantum and classical correlations. Phys. Rev. Lett. 104, 080501 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  15. Dakić B., Vedral V., Brukner C`.: Necessary and sufficient condition for nonzero quantum discord. Phys. Rev. Lett 105, 190502 (2010)

    Article  ADS  Google Scholar 

  16. Bennett C.H., Brassard G., Crepeav C., Jozsa R., Peres A., Wootters W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. Braunstein S.L., Kimble H.J.: Teleportation of continuous quantum variables. Phys. Rev. Lett. 80, 869 (1998)

    Article  ADS  Google Scholar 

  18. Bouwmeester D., Pan J.-W., Mattle K., Eibl M., Weinfurter H., Zeilinger A.: Experimental quantum teleportation. Nature (London) 390, 575 (1997)

    Article  ADS  Google Scholar 

  19. Boschi D., Branca S., De Martini F., Hardy L., Popescu S.: Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 80, 1121 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. Horn R.A., Johnson C.R.: Matrix Analysis, chaps 7. Cambridge University Press, New York (1985)

    Google Scholar 

  21. Werner R.F.: Quantum states with Einstein–Podolsky–Rosen correlations admitting a hidden-variable model. Phys. Rev. A 40, 4277 (1989)

    Article  ADS  Google Scholar 

  22. Wootters W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998)

    Article  ADS  Google Scholar 

  23. Ali M., Rau A.R.P., Alber G.: Quantum discord for two-qubit X states. Phys. Rev. A 81, 042105 (2010)

    Article  ADS  Google Scholar 

  24. James D.F., Kwiat P.G., Munro W.J., White A.G.: Measurement of qubits. Phys. Rev. A 64, 052312 (2001)

    Article  ADS  Google Scholar 

  25. Bennett C.H., Brassard G., Popescu S. et al.: Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett. 76, 722–725 (1996)

    Article  ADS  Google Scholar 

  26. Yu T., Eberly J.H.: Finite-time disentanglement via spontaneous emission. Phys. Rev. Lett. 93, 140404 (2004)

    Article  ADS  MATH  Google Scholar 

  27. Barbieri M., De Martini F., Di Nepi G., Mataloni P., D’Ariano G.M., Macchiavello C.: Detection of entanglement with polarized photons: experimental realization of an entanglement witness. Phys. Rev. Lett 91, 227901 (2003)

    Article  ADS  Google Scholar 

  28. Peters N.A., Altepeter J.B., Branning D., Jeffrey E.R., Wei T.C., Kwiat P.G.: Maximally entangled mixed states: creation and concentration. Phys. Rev. Lett. 92, 133601 (2004)

    Article  ADS  Google Scholar 

  29. Riebe M., Haffner H., Roos C.F et al.: Deterministic quantum teleportation with atoms. Nature (London) 429, 734–737 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, L., Huang, JH., Dowling, J.P. et al. Quantum information transmission. Quantum Inf Process 12, 899–906 (2013). https://doi.org/10.1007/s11128-012-0435-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-012-0435-2

Keywords

Navigation