Skip to main content
Log in

Polarization-sensitive optical coherence tomography: a review of classical and quantum perspectives

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Quantum optical coherence tomography (QOCT) has inherent advantages of high resolution and dispersion cancellation due to the nonclassical nature of entangled two-photon source used in the system. In this review, we discuss the basic operation of a time-domain polarization-sensitive OCT (PS-OCT) and a similar PS-QOCT system based on the Jones vector and Jones matrix formalism. We also discuss Stokes and Mueller matrix imaging in the context of PS-OCT systems to construct depth-resolved cross-sectional polarization-sensitive images. Experimental development of PS-QOCT is comparatively recent. It is poised to offer a new tool for polarization-sensitive quantum imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fercher A.F., Hitzenberger C.K.: Optical coherence tomography. In: Wolf, E. (eds) Progress in Optics, chap. 4, vol. 44, pp. 215–302. Elsevier, Amsterdam (2002)

    Chapter  Google Scholar 

  2. Tomlins P.H., Wang R.K.: Theory, developments and applications of optical coherence tomography. J. Phys. D Appl. Phys. 38, 2519–2535 (2005)

    Article  ADS  Google Scholar 

  3. Brezinski M.E.: Optical Coherence Tomography: Principles and Applications. Academic, San Diego (2006)

    Google Scholar 

  4. Drexler, W., Fujimoto, J. (eds): Optical Coherence Tomography: Technology and Applications. Springer, Berlin (2008)

    Google Scholar 

  5. Zysk A.M., Nguyen F.T., Oldenburg A.L., Marks D.L., Boppart S.A.: Optical coherence tomography: a review of clinical development from bench to bedside. J. Biomed. Opt. 12, 051403-1–051403-21 (2007)

    Article  ADS  Google Scholar 

  6. Special section on optical coherence tomography. BioOptics World March–April 6–31 (2011)

  7. Wojtkowski M.: High-speed optical coherence tomography: basics and applications. Appl. Opt. 49, D30–D60 (2010)

    Article  Google Scholar 

  8. Yun S., Tearney G., de Boer J., Iftimia N., Bouma B.: High-speed optical frequency-domain imaging. Opt. Exp. 11, 2953–2963 (2003)

    Article  ADS  Google Scholar 

  9. Hee M.R., Huang D., Swanson E.A., Fujimoto J.G.: Polarization sensitive low coherence reflectometer for birefringence characterization and ranging. J. Opt. Soc. Am. B 9, 903–908 (1992)

    Article  ADS  Google Scholar 

  10. de Boer J., Milner T.E.: Review of polarization sensitive optical coherence tomography and Stokes vector determination. J. Bio. Opt. 7, 359–371 (2002)

    Article  Google Scholar 

  11. Pircher M., Goetzinger E., Leitgeb R., Hitzenberger C.K.: Three dimensional polarization sensitive OCT of human skin in vivo. Opt. Exp. 12, 3236–3244 (2004)

    Article  ADS  Google Scholar 

  12. Abouraddy A.F., Nasr M.B., Saleh B.E.A., Sergienko A.V., Teich M.C.: Quantum-optical coherence tomography with dispersion cancellation. Phys. Rev. A 65, 053817 (2002)

    Article  ADS  Google Scholar 

  13. Nasr M.B., Goode D.P., Nguyen N., Rong G., Yang L., Reinhard B.M., Saleh B.E.A., Teich M.C.: Quantum optical coherence tomography of a biological sample. Opt. Commun. 282, 1154–1159 (2009)

    Article  ADS  Google Scholar 

  14. Booth M.C., Saleh B.E.A., Teich M.C.: Polarization-sensitive quantum-optical coherence tomography: experiment. Opt. Commun. 284, 2542–2549 (2011)

    Article  ADS  Google Scholar 

  15. Jiao S., Yao G., Wang L.V.: Depth-resolved two-dimensional Stokes vectors of backscattered light and Mueller matrices of biological tissue measured with optical coherence tomography. Appl. Opt. 39, 6318–6324 (2000)

    Article  ADS  Google Scholar 

  16. Liu X., Tseng S.C., Tripathi R., Heifetz A., Shahriar M.S.: White light interferometric detection of unpolarized light for complete Stokesmetric optical coherence tomography. Opt. Commun. 284, 3497–3503 (2011)

    Article  ADS  Google Scholar 

  17. de Boer J.F., Milner T.E., van Gemert M.J.C., Nelson J.S.: Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography. Opt. Lett. 22, 934–936 (1997)

    Article  ADS  Google Scholar 

  18. Schoenenberger K., Colston B.W. Jr., Maitland D.J., Da Silva L.B., Everett M.J.: Mapping of birefringence and thermal damage in tissue by use of polarization-sensitive optical coherence tomography. Appl. Opt. 37, 6026–6036 (1998)

    Article  ADS  Google Scholar 

  19. Hitzenberger C.K., Gotzinger E., Sticker M., Pircher M., Fercher A.F.: Measurement and imaging of birefringence and optic axis orientation by phase resolved polarization sensitive optical coherence tomography. Opt. Exp. 9, 780–790 (2001)

    Article  ADS  Google Scholar 

  20. Goldstein D.: Polarized Light. CRC Press, New York (2003)

    Google Scholar 

  21. Hecht E.: Optics. Addison Wesley, Reading, MA (2002)

    Google Scholar 

  22. Mandel L., Wolf E.: Optical Coherence and Quantum Optics. Cambridge University Press, Cambridge (1995)

    Book  Google Scholar 

  23. de Boer J.F., Srinivas S.M., Park B.H., Pham T.H., Chen Z., Milner T.E., Nelson J.S.: Polarization effects in optical coherence tomography of various biological tissues. IEEE J. Quant. Elect. 5, 1200–1204 (1999)

    Article  Google Scholar 

  24. Bohren C.F., Huffman D.R.: Absorption and Scattering of Light by Small Particles. Wiley, New York (1983)

    Google Scholar 

  25. Bickle W.S., Bailey W.B.: Stokes vectors, Mueller matrices, and polarized light scattered light. Am. J. Phys. 53, 468–478 (1985)

    Article  ADS  Google Scholar 

  26. Shahriar M.S., Tripathi R., Shen J.T.: Ultra-fast holographic stokesmeter for active polarization imaging in real time. Opt. Lett. 29, 298–300 (2004)

    Article  ADS  Google Scholar 

  27. Lee J.-K., Shen J.T., Heifetz A., Tripathi R., Shahriar M.S.: Demonstration of a thick holographic stokesmeter. Opt. Commun. 259, 484 (2006)

    Article  ADS  Google Scholar 

  28. Brink H.B.K., van Blokland G.J.: Birefringence of the human foveal area assessed in vivo with Mueller-matrix ellipsometry. J. Opt. Soc. Am. A 5, 49–57 (1988)

    Article  ADS  Google Scholar 

  29. de Boer J.F., Milner T.E., Nelson J.S.: Determination of the depth resolved Stokes parameters of light backscattered from turbid media using polarization sensitive optical coherence tomography. Opt. Lett. 24, 300–302 (1999)

    Article  ADS  Google Scholar 

  30. Yao G., Wang L.: Two-dimensional depth-resolved Mueller matrix characterization of biological tissue by optical coherence tomography. Opt. Lett. 24, 537–539 (1999)

    Article  ADS  Google Scholar 

  31. Saxer C.E., de Boer J.F., Park B.H., Zhao Y., Chen C., Nelson J.S.: High speed fiber based polarization sensitive optical coherence tomography of in vivo human skin. Opt. Lett. 25, 1355–1357 (2000)

    Article  ADS  Google Scholar 

  32. Roth J.E., Kozak J.A., Yazdanfar S., Rollins A.M., Izatt J.A.: Simplified method for polarization-sensitive optical coherence tomography. Opt. Lett. 26, 1069–1071 (2001)

    Article  ADS  Google Scholar 

  33. Gotzinger E., Pircher M., Hitzenberger C.K.: High speed spectral domain polarization sensitive optical coherence tomography of the human retina. Opt. Exp. 13, 10217–10229 (2005)

    Article  ADS  Google Scholar 

  34. Chen P.-C., Lo Y.-L., Yu T.-C., Lin J.-F., Yang T.-T.: Measurement of linear birefringence and diattenuation properties of optical samples using polarimeter and Stokes parameters. Opt. Exp. 17, 15860–15884 (2009)

    Article  ADS  Google Scholar 

  35. Shapiro J.W.: Performance analysis of peak-detecting laser radars. Proc. SPIE 663, 38–56 (1986)

    Article  ADS  Google Scholar 

  36. Huang H., Swanson E.A., Lin C.P., Schuman J.S., Stinson W.G., Chang W., Hee M.R., Flotte T., Gregory K., Puliafito C.A., Fujimoto J.G.: Optical coherence tomography. Science 254, 1178–1181 (1991)

    Article  ADS  Google Scholar 

  37. Tripathi R., Nassif N., Park B.H., Nelson J.S., de Boer J.F.: Spectral shaping for non Gaussian source spectra in optical coherence tomography. Opt. Lett. 27, 406–408 (2002)

    Article  ADS  Google Scholar 

  38. Kulkarni M.D., Thomas C.W., Izatt J.A.: Image enhancement in optical coherence tomography using deconvolution. Electron. Lett. 33, 1365–1367 (1997)

    Article  Google Scholar 

  39. Zhang Y., Sato M., Tanno N.: Resolution improvement in optical coherence tomography based on destructive interference. Opt. Commun. 187, 65–70 (2001)

    Article  ADS  Google Scholar 

  40. Hsu I.-J., Sun C.-W., Lu C.-W., Yang C.C., Chiang C.-P., Lin C.-W.: Resolution improvement with dispersion manipulation and a retrieval algorithm in optical coherence tomography. Appl. Opt. 42, 227–234 (2003)

    Article  ADS  Google Scholar 

  41. Siegman A.E.: Lasers. University Science Books, Mill Valley (1986)

    Google Scholar 

  42. Nasr M.B., Saleh B.E.A., Sergienko A.V., Teich M.C.: Demonstration of dispersion-cancelled quantum-optical coherence tomography. Phys. Rev. Lett. 91, 083601 (2003)

    Article  ADS  Google Scholar 

  43. Rubin M.H., Klyshko D.N., Shih Y.H., Sergienko A.V.: Theory of two-photon entanglement in type-II optical parametric down-conversion. Phys. Rev. A 50, 5122–5133 (1994)

    Article  ADS  Google Scholar 

  44. Shih Y.H., Sergienko A.V., Rubin M.H., Kiess T.E., Alley C.O.: Two-photon entanglement in type-II down-conversion. Phys. Rev. A 50, 23–28 (1994)

    Article  ADS  Google Scholar 

  45. Kwait P.G., Mattle K., Weinfurter H., Zeilinger A., Sergienko A.V., Shih Y.: New high-intensity source of polarization-entangled photon pairs. Phys. Rev. Lett. 75, 4337–4341 (1995)

    Article  ADS  Google Scholar 

  46. Fox M.: Quantum Optics an Introduction. Oxford University Press, New York (2007)

    MATH  Google Scholar 

  47. Tittel W., Brendel J., Zbinden H., Gisin N.: Violation of Bell inequalities by photons more than 10 km apart. Phys. Rev. Lett. 81, 3563–3566 (1998)

    Article  ADS  Google Scholar 

  48. Boschi D., Branca S., De Martini F., Hardy L., Popescu S.: Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein-Podolsky-Roosen channels. Phys. Rev. Lett. 80, 1121–1125 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  49. Nagasako E.M., Bentley S.J., Boyd R.W., Agarwal G.S.: Nonclassical two-photon interferometry and lithography with high-gain parametric amplifiers. Phys. Rev. A 64, 043802-1–043802-5 (2001)

    Article  ADS  Google Scholar 

  50. Scully M.O., Zubairy M.S.: Quantum Optics. Chap. 21. Cambridge University Press, Cambridge (2002)

    Google Scholar 

  51. Hong C.K., Ou Z.Y., Mandel L.: Measurement of subpicosecond time intervals between two photons by interference. Phys. Rev. Lett. 59, 2044–2046 (1987)

    Article  ADS  Google Scholar 

  52. Mandel L.: Quantum effects in one-photon and two-photon interference. Rev. Mod. Phys. 71, S274–S282 (1999)

    Article  Google Scholar 

  53. Glauber R.J.: The quantum theory of optical coherence. Phys. Rev. 130, 2529–2539 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  54. Steinberg A.M., Kwait P.G., Chiao R.Y.: Dispersion cancellation and high-resolution time measurements in a fourth-order optical interferometer. Phys. Rev. A 45, 6659–6665 (1992)

    Article  ADS  Google Scholar 

  55. Erkmen B.I., Shapiro J.H.: Phase-conjugate optical coherence tomography. Phys. Rev. A 74, 041601(R) (2006)

    Article  ADS  Google Scholar 

  56. Le Gouet J., Venkatraman D., Wong F.N.C., Shapiro J.H.: Experimental realization of phase-conjugate optical coherence tomography. Opt. Lett. 35, 1001–1003 (2010)

    Article  ADS  Google Scholar 

  57. Booth M.C., Di Giuseppe G., Saleh B.E.A., Sergienko A.V., Teich M.C.: Polarization-sensitive quantum-optical coherence tomography. Phys. Rev. A 69, 043815 (2004)

    Article  ADS  Google Scholar 

  58. Abouraddy A.F., Sergienko A.V., Saleh B.E.A., Teich M.C.: Quantum entanglement and the two-photon Stokes parameters. Opt. Commun. 201, 93–98 (2002)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renu Tripathi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tripathi, R. Polarization-sensitive optical coherence tomography: a review of classical and quantum perspectives. Quantum Inf Process 11, 1533–1549 (2012). https://doi.org/10.1007/s11128-011-0315-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-011-0315-1

Keywords

Navigation