Skip to main content
Log in

Quantum computing implementations with neutral particles

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We review quantum information processing with cold neutral particles, that is, atoms or polar molecules. First, we analyze the best suited degrees of freedom of these particles for storing quantum information, and then we discuss both single- and two-qubit gate implementations. We focus our discussion mainly on collisional quantum gates, which are best suited for atom-chip-like devices, as well as on gate proposals conceived for optical lattices. Additionally, we analyze schemes both for cold atoms confined in optical cavities and hybrid approaches to entanglement generation, and we show how optimal control theory might be a powerful tool to enhance the speed up of the gate operations as well as to achieve high fidelities required for fault tolerant quantum computation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Nielsen M.A., Chuang I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  2. Schmiedmayer J., Folman R., Calarco T.: Quantum information processing with neutral atoms on an atom chip. J. Mod. Opt. 49(8), 1375–1388 (2002)

    Article  ADS  Google Scholar 

  3. Rabl P., DeMille D., Doyle J.M., Lukin M.D., Schoelkopf R.J., Zoller P.: Hybrid quantum processors: molecular ensembles as quantum memory for solid state circuits. Phys. Rev. Lett. 97, 033003 (2006)

    Article  ADS  Google Scholar 

  4. Deutsch C., Ramirez-Martinez F., Lacroûte C., Reinhard F., Schneider T., Fuchs J.N., Piéchon F., Laloë F., Reichel J., Rosenbusch P.: Spin self-rephasing and very long coherence times in a trapped atomic ensemble. Phys. Rev. Lett. 105, 020401 (2010)

    Article  ADS  Google Scholar 

  5. DiVincenzo D.P.: The physical implementation of quantum computation. Fortschr. Phys. 48, 771 (2000)

    Article  MATH  Google Scholar 

  6. Treutlein P., Steinmetz T., Colombe Y., Lev B., Hommelhoff P., Reichel J., Greiner M., Mandel O., Widera A., Rom T., Bloch I., Hänsch T.W.: Quantum information processing in optical lattices and magnetic microtraps. Fortschr. Phys. 54(8-10), 702–718 (2006)

    Article  Google Scholar 

  7. Andre A., DeMille D., Doyle J.M., Lukin M.D., Maxwell S.E., Rabl P., Schoelkopf R.J., Zoller P.: A coherent all-electrical interface between polar molecules and mesoscopic superconducting resonators. Nat. Phys. 2(9), 636–642 (2006)

    Article  Google Scholar 

  8. Reichel, J., Vuletic, V. (eds): Atom Chips. Wiley-VCH Verlag, Weinheim (2011)

    Google Scholar 

  9. Chen G., Church D.A., Englert B.-G., Henkel C., Rohwedder B., Scully M.O., Zubairy M.S.: Quantum Computing Devices: Principles, Designs, and Analysis. Chapman & Hall/CRC Taylor & Francis Group, Boca Raton (2006)

    Google Scholar 

  10. Treutlein P., Hommelhoff P., Steinmetz T., Hänsch T.W., Reichel J.: Coherence in microchip traps. Phys. Rev. Lett. 92, 203005 (2004)

    Article  ADS  Google Scholar 

  11. Lengwenus A., Kruse J., Volk M., Ertmer W., Birkl G.: Coherent manipulation of atomic qubits in optical micropotentials. Appl. Phys. B 86, 377 (2007)

    Article  ADS  Google Scholar 

  12. Daley A.J., Boyd M.M., Ye J., Zoller P.: Quantum computing with alkaline-earth-metal atoms. Phys. Rev. Lett. 101, 170504 (2008)

    Article  ADS  Google Scholar 

  13. Eckert K., Mompart J., Yi X.X., Schliemann J., Bruß D., Birkl G., Lewenstein M.: Quantum computing in optical microtraps based on the motional states of neutral atoms. Phys. Rev. A 66(4), 042317 (2002)

    Article  ADS  Google Scholar 

  14. Mompart J., Eckert K., Ertmer W., Birkl G., Lewenstein M.: Quantum computing with spatially delocalized qubits. Phys. Rev. Lett. 90(14), 147901 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  15. Cirone M.A., Negretti A., Calarco T., Krüger P., Schmiedmayer J.: A simple quantum gate with atom chips. Eur. Phys. J. D 35(1), 165–171 (2005)

    Article  ADS  Google Scholar 

  16. Charron E., Cirone M.A., Negretti A., Schmiedmayer J., Calarco T.: Theoretical analysis of a realistic atom-chip quantum gate. Phys. Rev. A 74(1), 012308 (2006)

    Article  ADS  Google Scholar 

  17. Jaksch D., Cirac J.I., Zoller P., Rolston S.L., Côté R., Lukin M.D.: Fast quantum gates for neutral atoms. Phys. Rev. Lett. 85, 2208–2211 (2000)

    Article  ADS  Google Scholar 

  18. Mozley J., Hyafil P., Nogues G., Brune M., Raimond J.-M., Haroche S.: Trapping and coherent manipulation of a Rydberg atom on a microfabricated device: a proposal. Eur. Phys. J. D 35(1), 43–57 (2005)

    Article  ADS  Google Scholar 

  19. Lukin M.D., Fleischhauer M., Cote R., Duan L.M., Jaksch D., Cirac J.I., Zoller P.: Dipole blockade and quantum information processing in mesoscopic atomic ensembles. Phys. Rev. Lett. 87(3), 037901 (2001)

    Article  ADS  Google Scholar 

  20. Brion E., Mølmer K., Saffman M.: Quantum computing with collective ensembles of multilevel systems. Phys. Rev. Lett. 99, 260501 (2007)

    Article  ADS  Google Scholar 

  21. Yan H., Yang G., Shi T., Wang J., Zhan M.: Quantum gates with atomic ensembles on an atom chip. Phys. Rev. A 78, 034304 (2008)

    Article  ADS  Google Scholar 

  22. Verdú J., Zoubi H., Koller C., Majer J., Ritsch H.: Strong magnetic coupling of an ultracold gas to a superconducting waveguide cavity. Phys. Rev. Lett. 103, 043603 (2009)

    Article  ADS  Google Scholar 

  23. Tordrup K., Negretti A., Mølmer K.: Holographic quantum computing. Phys. Rev. Lett. 101(4), 40501 (2008)

    Article  ADS  Google Scholar 

  24. Wesenberg J.H., Ardavan A., Briggs G.A.D., Morton J.J.L., Schoelkopf R.J., Schuster D.I., Mølmer K.: Quantum computing with an electron spin ensemble. Phys. Rev. Lett. 103(7), 070502 (2009)

    Article  ADS  Google Scholar 

  25. Wu H., George R.E., Wesenberg J.H., Mølmer K., Schuster D.I., Schoelkopf R.J., Itoh K.M., Ardavan A., Morton J.J.L., Briggs G.A.D.: Storage of multiple coherent microwave excitations in an electron spin ensemble. Phys. Rev. Lett. 105, 140503 (2010)

    Article  ADS  Google Scholar 

  26. Böhi P., Riedel M.F., Hoffrogge J., Reichel J., Hänsch T.W., Treutlein P.: Coherent manipulation of Bose–Einstein condensates with state-dependent microwave potentials on an atom chip. Nat. Phys. 5(8), 592 (2009)

    Article  Google Scholar 

  27. Wineland D.J., Monroe C., Itano W.M., Leibfried D., King B.E., Meekhof D.M.: Experimental issues in coherent quantum-state manipulation of trapped atomic ions. J. Res. Natl. Inst. Stand. Technol. 103(3), 259 (1998)

    Google Scholar 

  28. Mandel O., Greiner M., Widera A., Rom T., Hänsch T.W., Bloch I.: Controlled collisions for multi-particle entanglement of optically trapped atoms. Nature 425, 937 (2004)

    Article  ADS  Google Scholar 

  29. Schrader D., Dotsenko I., Khudaverdyan M., Miroshnychenko Y., Rauschenbeutel A., Meschede D.: Neutral atom quantum register. Phys. Rev. Lett. 93, 150501 (2004)

    Article  ADS  Google Scholar 

  30. Nelson K.D., Li X., Weiss D.S.: Imaging single atoms in a three-dimensional array. Nat. Phys. 3, 556 (2007)

    Article  Google Scholar 

  31. Beugnon J., Tuchendler C., Marion H., Gaëtan A., Miroshnychenko Y., Sortais Y.R.P., Lance A.M., Jones M.P.A., Messin G., Browaeys A., Grangier P.: Two-dimensional transport and transfer of a single atomic qubit in optical tweezers. Nat. Phys. 3, 696 (2007)

    Article  Google Scholar 

  32. Lundblad N., Obrecht J.M., Spielman I.B., Porto J.V.: Field-sensitive addressing and control of field-insensitive neutral-atom qubits. Nat. Phys. 5, 575 (2009)

    Article  Google Scholar 

  33. Weitenberg C., Endres M., Sherson J.F., Cheneau M., Schauß P., Fukuhara T., Bloch I., Kuhr S.: Single-spin addressing in an atomic Mott insulator. Nature 471, 319 (2011)

    Article  ADS  Google Scholar 

  34. Bakr W.S., Peng A., Tai M.E., Ma R., Simon J., Gillen J.I., Fölling S., Pollet L., Greiner M.: Probing the superfluid-to-Mott insulator transition at the single-atom level. Science 329, 547 (2010)

    Article  ADS  Google Scholar 

  35. Morinaga M., Bouchoule I., Karam J.C., Salomon C.: Manipulation of motional quantum states of neutral atoms. Phys. Rev. Lett. 83(20), 4037–4040 (1999)

    Article  ADS  Google Scholar 

  36. Wang Y.-J., Anderson D.Z., Bright V.M., Cornell E.A., Diot Q., Kishimoto T., Prentiss M., Saravanan R.A., Segal S.R., Wu S.: Atom Michelson interferometer on a chip using a Bose–Einstein condensate. Phys. Rev. Lett. 94, 090405 (2005)

    Article  ADS  Google Scholar 

  37. Hofferberth S., Lesanovsky I., Fischer B., Verdu J., Schmiedmayer J.: Radiofrequency-dressed-state potentials for neutral atoms. Nat. Phys. 2, 710 (2006)

    Article  Google Scholar 

  38. Calarco T., Hinds E.A., Jaksch D., Schmiedmayer J., Cirac J.I., Zoller P.: Quantum gates with neutral atoms: controlling collisional interactions in time-dependent traps. Phys. Rev. A 61, 022304 (2000)

    Article  ADS  Google Scholar 

  39. Calarco T., Briegel H.-J., Jaksch D., Cirac J., Zoller P.: Quantum computing with trapped particles in microscopic potentials. Fortschr. Phys. 48(9-11), 945–955 (2000)

    Article  Google Scholar 

  40. Calarco T., Briegel H.-J., Jaksch D., Cirac J.I., Zoller P.: Entangling neutral atoms for quantum information processing. J. Mod. Opt. 47(12), 2137–2149 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  41. Calarco T., Cirac J.I., Zoller P.: Entangling ions in arrays of microscopic traps. Phys. Rev. A 63, 062304 (2001)

    Article  ADS  Google Scholar 

  42. Petrov D.S., Shlyapnikov G.V., Walraven J.T.M.: Regimes of quantum degeneracy in trapped 1D gases. Phys. Rev. Lett. 85, 3745–3749 (2000)

    Article  ADS  Google Scholar 

  43. Negretti A., Calarco T., Cirone M.A., Recati A.: Performance of quantum phase gates with cold trapped atoms. Eur. Phys. J. D 32(1), 119–128 (2005)

    Article  ADS  Google Scholar 

  44. Treutlein P., Hansch T.W., Reichel J., Negretti A., Cirone M.A., Calarco T.: Microwave potentials and optimal control for robust quantum gates on an atom chip. Phys. Rev. A 74(2), 022312 (2006)

    Article  ADS  Google Scholar 

  45. Riedel M.F., Böhi P., Li Y., Hänsch T.W., Sinatra A., Treutlein P.: Atom-chip-based generation of entanglement for quantum metrology. Nature 464, 1170 (2010)

    Article  ADS  Google Scholar 

  46. Böhi P., Riedel M.F., Hänsch T.W., Treutlein P.: Imaging of microwave fields using ultracold atoms. Appl. Phys. Lett. 97, 051101 (2010)

    Article  ADS  Google Scholar 

  47. Lesanovsky I., Hofferberth S., Schmiedmayer J., Schmelcher P.: Manipulation of ultracold atoms in dressed adiabatic radio-frequency potentials. Phys. Rev. A 74(3), 033619 (2006)

    Article  ADS  Google Scholar 

  48. Calarco T., Dorner U., Julienne P.S., Williams C.J., Zoller P.: Quantum computations with atoms in optical lattices: Marker qubits and molecular interactions. Phys. Rev. A 70(1), 012306 (2004)

    Article  ADS  Google Scholar 

  49. Krotov V.F.: Global Methods in Optimal Control Theory, vol. 195. Marcel Dekker Inc., New York (1996)

    Google Scholar 

  50. Sklarz S.E., Tannor D.J.: Loading a Bose–Einstein condensate onto an optical lattice: An application of optimal control theory to the nonlinear Schrödinger equation. Phys. Rev. A 66, 053619 (2002)

    Article  ADS  Google Scholar 

  51. Charron E., Tiesinga E., Mies F., Williams C.: Optimizing a phase gate using quantum interference. Phys. Rev. Lett. 88, 077901 (2002)

    Article  ADS  Google Scholar 

  52. Birkl G., Fortágh J.: Micro traps for quantum information processing and precision force sensing. Laser Photon. Rev. 1(1), 12–23 (2007)

    Article  Google Scholar 

  53. Dumke R., Volk M., Müther T., Buchkremer F.B.J., Birkl G., Ertmer W.: Micro-optical realization of arrays of selectively addressable dipole traps: a scalable configuration for quantum computation with atomic qubits. Phys. Rev. Lett. 89, 097903 (2002)

    Article  ADS  Google Scholar 

  54. Bergamini S., Darquié B., Jones M., Jacubowiez L., Browaeys A., Grangier P.: Holographic generation of microtrap arrays for single atoms by use of a programmable phase modulator. J. Opt. Soc. Am. B 21, 1889–1894 (2004)

    Article  ADS  Google Scholar 

  55. Lengwenus A., Kruse J., Schlosser M., Tichelmann S., Birkl G.: Coherent transport of atomic quantum states in a scalable shift register. Phys. Rev. Lett. 105, 170502 (2010)

    Article  ADS  Google Scholar 

  56. Jaksch D., Briegel H.-J., Cirac J.I., Gardiner C.W., Zoller P.: Entanglement of atoms via cold controlled collisions. Phys. Rev. Lett. 82, 1975–1978 (1999)

    Article  ADS  Google Scholar 

  57. Jaksch D., Bruder C., Cirac J.I., Gardiner C.W., Zoller P.: Cold bosonic atoms in optical lattices. Phys. Rev. Lett. 81, 3108–3111 (1998)

    Article  ADS  Google Scholar 

  58. Greiner M., Mandel O., Esslinger T., Hänsch T.W., Bloch I.: Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms. Nature 39, 415 (2002)

    Google Scholar 

  59. Fisher M.P.A., Weichman P.B., Grinstein G., Fisher D.S.: Boson localization and the superfluid-insulator transition. Phys. Rev. B 40, 546 (1989)

    Article  ADS  Google Scholar 

  60. Bruder C., Fazio R., Schön G.: Superconductor Mott-insulator transition in Bose systems with finite-range interactions. Phys. Rev. B 47, 342–347 (1993)

    Article  ADS  Google Scholar 

  61. Doria P., Calarco T., Montangero S.: Optimal control technique for many-body quantum dynamics. Phys. Rev. Lett. 106, 190501 (2011)

    Article  ADS  Google Scholar 

  62. Sherson, J., Mølmer, K.: arXiv:1012.1457v1

  63. Finkelstein V., Berman P.R., Guo J.: One-dimensional laser cooling below the Doppler limit. Phys. Rev. A 45, 1829 (1992)

    Article  ADS  Google Scholar 

  64. Briegel H.-J., Calarco T., Jaksch D., Cirac J.I., Zoller P.: Quantum computing with neutral atoms. J. Mod. Opt. 47(47), 415 (2000)

    MathSciNet  ADS  Google Scholar 

  65. Singh M., Volk M., Akulshin A., Sidorov A., McLean R., Hannaford P.: One-dimensional lattice of permanent magnetic microtraps for ultracold atoms on an atom chip. J. Phys. B At. Mol. Opt. Phys. 41(6), 065301 (2008)

    Article  Google Scholar 

  66. Whitlock S., Gerritsma R., Fernholz T., Spreeuw R.J.C.: Two-dimensional array of microtraps with atomic shift register on a chip. New. J. Phys. 11, 023021 (2009)

    Article  ADS  Google Scholar 

  67. Christandl K., Lafyatis G.P., Lee S.-C., Lee J.-F.: One- and two-dimensional optical lattices on a chip for quantum computing. Phys. Rev. A 70, 032302 (2004)

    Article  ADS  Google Scholar 

  68. Calarco T., Cirone M.A., Cozzini M., Negretti A., Recati A., Charron E.: Quantum control theory for decoherence suppression in quantum gates. Int. J. Quantum Inf. 5, 207 (2007)

    Article  Google Scholar 

  69. Chiara G.D., Calarco T., Anderlini M., Montangero S., Lee P.J., Brown B.L., Phillips W.D., Porto J.V.: Optimal control of atom transport for quantum gates in optical lattices. Phys. Rev. A 77, 052333 (2008)

    Article  ADS  Google Scholar 

  70. Sherson J.F., Weitenberg C., Endres M.C.M., Bloch I., Kuhr S.: Single-atom-resolved fluorescence imaging of an atomic Mott insulator. Nature 467, 68 (2010)

    Article  ADS  Google Scholar 

  71. Bakr W.S., Gillen J.I., Peng A., Fölling S., Greiner M.: A quantum gas microscope for detecting single atoms in a Hubbard-regime optical lattice. Nature 462, 74 (2009)

    Article  ADS  Google Scholar 

  72. Weitenberg, C., Kuhr, S., Mølmer, K., Sherson, J.: A quantum computation architecture using optical tweezers. arXiv:1107.2632v1

  73. Brennen G.K., Caves C.M., Jessen P.S., Deutsch I.H.: Quantum logic gates in optical lattices. Phys. Rev. Lett. 82, 1060 (1999)

    Article  ADS  Google Scholar 

  74. Colombe Y., Steinmetz T., Dubois G., Linke F., Hunger D., Reichel J.: Strong atom-field coupling for Bose–Einstein condensates in an optical cavity on a chip. Nature 450, 272 (2007)

    Article  ADS  Google Scholar 

  75. Pellizzari T., Gardiner S.A., Cirac J.I., Zoller P.: Decoherence, continuous observation, and quantum computing: a cavity QED model. Phys. Rev. Lett. 75(21), 3788–3791 (1995)

    Article  ADS  Google Scholar 

  76. Sørensen A.S., Mølmer K.: Measurement induced entanglement and quantum computation with atoms in optical cavities. Phys. Rev. Lett. 91, 097905 (2003)

    Article  ADS  Google Scholar 

  77. Brion E., Mouritzen A.S., Mølmer K.: Conditional dynamics induced by new configurations for Rydberg dipole-dipole interactions. Phys. Rev. A 76, 022334 (2007)

    Article  ADS  Google Scholar 

  78. Brion E., Pedersen L.H., Mølmer K.: Implementing a neutral atom Rydberg gate without populating the Rydberg state. J. Phys. B At. Mol. Opt. Phys. 40, S159 (2007)

    Article  ADS  Google Scholar 

  79. Müller M., Lesanovsky I., Weimer H., Büchler H.P., Zoller P.: Mesoscopic Rydberg gate based on electromagnetically induced transparency. Phys. Rev. Lett. 102, 170502 (2009)

    Article  Google Scholar 

  80. Møller D., Madsen L.B., Mølmer K.: Quantum gates and multiparticle entanglement by Rydberg excitation blockade and adiabatic passage. Phys. Rev. Lett. 100, 170504 (2008)

    Article  Google Scholar 

  81. Urban E., Johnson T.A., Henage T., Isenhower L., Yavuz D.D., Walker T.G., Saffman M.: Observation of Rydberg blockade between two atoms. Nat. Phys. 5, 110 (2009)

    Article  Google Scholar 

  82. Gaëtan A., Miroshnychenko Y., Wilk T., Chotia A., Viteau M., Comparat D., Pillet P., Browaeys A., Grangier P.: Observation of collective excitation of two individual atoms in the Rydberg blockade regime. Nat. Phys. 5, 115 (2009)

    Article  Google Scholar 

  83. Isenhower L., Urban E., Zhang X.L., Gill A.T., Henage T., Johnson T.A., Walker T.G., Saffman M.: Demonstration of a neutral atom controlled-NOT quantum gate. Phys. Rev. Lett. 104, 010503 (2010)

    Article  ADS  Google Scholar 

  84. Goerz M.H., Calarco T., Koch C.P.: The quantum speed limit of optimal controlled phasegates for trapped neutral atoms. J. Phys. B At. Mol. Opt. Phys. 44, 154011 (2011)

    Article  ADS  Google Scholar 

  85. Saffman M., Walker T.G., Mølmer K.: Quantum information with Rydberg atoms. Rev. Mod. Phys. 82, 2313 (2010)

    Article  ADS  Google Scholar 

  86. DeMille D.: Quantum computation with trapped polar molecules. Phys. Rev. Lett. 88, 067901 (2002)

    Article  ADS  Google Scholar 

  87. Lee C., Ostrovskaya E.A.: Quantum computation with diatomic bits in optical lattices. Phys. Rev. A 72, 062321 (2005)

    Article  ADS  Google Scholar 

  88. Schoelkopf R.J., Wahlgren P., Kozhevnikov A.A., Delsing P., Prober D.E.: The radio-frequency single-electron transistor (RF-SET): a fast and ultrasensitive electrometer. Science 280, 1238 (1998)

    Article  ADS  Google Scholar 

  89. Yelin S.F., Kirby K., Côté R.: Schemes for robust quantum computation with polar molecules. Phys. Rev. A 74, 050301 (2006)

    Article  ADS  Google Scholar 

  90. Charron E., Milman P., Keller A., Atabek O.: Quantum phase gate and controlled entanglement with polar molecules. Phys. Rev. A 75, 033414 (2007)

    Article  ADS  Google Scholar 

  91. Tesch C.M., de Vivie-Riedle R.: Quantum computation with vibrationally excited molecules. Phys. Rev. Lett. 89, 157901 (2002)

    Article  ADS  Google Scholar 

  92. Sørensen A.S., van der Wal C.H., Childress L.I., Lukin M.D.: Capacitive coupling of atomic systems to mesoscopic conductors. Phys. Rev. Lett. 92, 063601 (2004)

    Article  ADS  Google Scholar 

  93. Tian L., Rabl P., Blatt R., Zoller P.: Interfacing quantum-optical and solid-state qubits. Phys. Rev. Lett. 92, 247902 (2004)

    Article  ADS  Google Scholar 

  94. Tordrup K., Mølmer K.: Quantum computing with a single molecular ensemble and a Cooper-pair box. Phys. Rev. A 77, 020301 (2008)

    Article  ADS  Google Scholar 

  95. Kuznetsova E., Gacesa M., Yelin S.F., Côté R.: Phase gate and readout with an atom-molecule hybrid platform. Phys. Rev. A 81, 030301 (2010)

    Article  ADS  Google Scholar 

  96. Trefzger C., Menotti C., Lewenstein M.: Pair-supersolid phase in a Bilayer system of dipolar lattice bosons. Phys. Rev. Lett. 103, 035304 (2009)

    Article  ADS  Google Scholar 

  97. Kuznetsova, E., Rittenhouse, S.T., Sadeghpour, H.R., Yelin, S.F.: Rydberg atom mediated polar molecule interactions: a tool for molecular-state conditional quantum gates and individual addressability PCCP. Phys. Chem. Chem. Phys. (2011). doi:10.1039/c1cp21476d

  98. Gehr R., Volz J., Dubois G., Steinmetz T., Colombe Y., Lev B.L., Long R., Estève J., Reichel J.: Cavity-based single atom preparation and high-fidelity hyperfine state readout. Phys. Rev. Lett. 104, 203602 (2010)

    Article  ADS  Google Scholar 

  99. Herskind P.F., Wang S.X., Shi M., Ge Y., Cetina M., Chuang I.L.: Microfabricated surface ion trap on a high-finesse optical mirror. Opt. Lett. 36, 3045–3047 (2011)

    Article  ADS  Google Scholar 

  100. Stick D., Hensinger W.K., Olmschenk S., Madsen M.J., Schwab K., Monroe C.: Ion trap in a semiconductor chip. Nat. Phys. 2, 36 (2006)

    Article  Google Scholar 

  101. Schulz S., Poschinger U., Singer K., Schmidt-Kaler F.: Optimization of segmented linear Paul traps and transport of stored particles. Fortschr. Phys. 54, 648 (2006)

    Article  Google Scholar 

  102. Seidelin S., Chiaverini J., Reichle R., Bollinger J.J., Leibfried D., Britton J., Wesenberg J.H., Blakestad R.B., Epstein R.J., Hume D.B., Itano W.M., Jost J.D., Langer C., Ozeri R., Shiga N., Wineland D.J.: Microfabricated surface-electrode ion trap for scalable quantum information processing. Phys. Rev. Lett. 96(25), 253003 (2006)

    Article  ADS  Google Scholar 

  103. Herskind P.F., Dantan A., Marler J.P., Albert M., Drewsen M.: Realization of collective strong coupling with ion Coulomb crystals in an optical cavity. Nat. Phys. 5, 494 (2009)

    Article  Google Scholar 

  104. Steffen M., Ansmann M., Bialczak R.C., Katz N., Lucero E., McDermott R., Neeley M., Weig E.M., Cleland A.N., Martinis J.M.: Measurement of the entanglement of two superconducting qubits via state tomography. Science 313, 1423 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  105. Majer J., Chow J.M., Gambetta J.M., Koch J., Johnson B.R., Schreier J.A., Frunzio L., Schuster D.I., Houck A.A., Wallraff A., Blais A., Devoret M.H., Girvin S.M., Schoelkopf R.J.: Coupling superconducting qubits via a cavity bus. Nature 449, 443 (2007)

    Article  ADS  Google Scholar 

  106. Kubo Y., Ong F.R., Bertet P., Vion D., Jacques V., Zheng D., Dréau A., Roch J.-F., Auffeves A., Jelezko F., Wrachtrup J., Barthe M.F., Bergonzo P., Esteve D.: Strong coupling of a spin ensemble to a superconducting resonator. Phys. Rev. Lett. 105, 140502 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Negretti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Negretti, A., Treutlein, P. & Calarco, T. Quantum computing implementations with neutral particles. Quantum Inf Process 10, 721 (2011). https://doi.org/10.1007/s11128-011-0291-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-011-0291-5

Keywords

Navigation