Skip to main content
Log in

Fast geometric gate operation of superconducting charge qubits in circuit QED

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

A scheme for coupling superconducting charge qubits via a one-dimensional superconducting transmission line resonator is proposed. The qubits are working at their optimal points, where they are immune to the charge noise and possess long decoherence time. Analysis on the dynamical time evolution of the interaction is presented, which is shown to be insensitive to the initial state of the resonator field. This scheme enables fast gate operation and is readily scalable to multiqubit scenario.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. You J.Q., Nori F.: Superconducting circuits and quantum information. Phys. Today 58(11), 42 (2005)

    Article  Google Scholar 

  2. Wallraff A. et al.: Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics. Nature (Lond.) 431, 162 (2004)

    Article  ADS  Google Scholar 

  3. Blais A., Huang R.-S., Wallraff A., Girvin S.M., Schoelkopf R.J.: Cavity quantum electrodynamics for superconducting electrical circuits: an architecture for quantum computation. Phys. Rev. A 69, 062320 (2004)

    Article  ADS  Google Scholar 

  4. Majer J. et al.: Coupling superconducting qubits via a cavity bus. Nature (Lond.) 449, 443 (2007)

    Article  ADS  Google Scholar 

  5. Zheng S.-B., Guo G.-C.: Efficient scheme for two-atom entanglement and quantum information processing in cavity QED. Phys. Rev. Lett. 85, 2392 (2000)

    Article  ADS  Google Scholar 

  6. Mølmer K., Sørensen A.: Multiparticle entanglement of hot trapped ions. Phys. Rev. Lett. 82, 1835 (1999)

    Article  ADS  Google Scholar 

  7. Sørensen A., Mølmer K.: Quantum computation with ions in thermal motion. Phys. Rev. Lett. 82, 1971 (1999)

    Article  ADS  Google Scholar 

  8. Sørensen A., Mølmer K.: Entanglement and quantum computation with ions in thermalmotion. Phys. Rev. A 62, 022311 (2000)

    Article  ADS  Google Scholar 

  9. Leibfried D. et al.: Experimental demonstration of a robust, high-fidelity geometric two ion-qubit phase gate. Nature (Lond.) 422, 412 (2003)

    Article  ADS  Google Scholar 

  10. Zheng S.-B.: High-speed generation of macroscopic quantum-interference states for the motion of a trapped ion. Phys. Rev. A 69, 055801 (2004)

    Article  ADS  Google Scholar 

  11. Zheng, S.-B.: Quantum-information processing and multiatom-entanglement engineering with a thermal cavity. Phys. Rev. A 66, 060303(R) (2002)

  12. Zhu S.-L., Wang Z.D., Zanardi P.: Geometric quantum computation and multiqubit entanglement with superconducting qubits inside a cavity. Phys. Rev. Lett. 94, 100502 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  13. Xue Z.-Y., Wang Z.D.: Simple unconventional geometric scenario of one-way quantum computation with superconducting qubits inside a cavity. Phys. Rev. A 75, 064303 (2007)

    Article  ADS  Google Scholar 

  14. Wang Y.-D., Kemp A., Semba K.: Coupling superconducting flux qubits at optimal point via dynamic decoupling with the quantum bus. Phys. Rev. B 79, 024502 (2009)

    Article  ADS  Google Scholar 

  15. Solano E., de Matos Filho R.L., Zagury N.: Strong-driving-assisted multipartite entanglement in cavity QED. Phys. Rev. Lett. 90, 027903 (2003)

    Article  ADS  Google Scholar 

  16. Scully M.O., Zubairy M.S.: Quantum Optics Chap. 2. Cambridge University Press, New York (1997)

    Book  Google Scholar 

  17. Zhu S.-L., Wang Z.D.: Unconventional geometric quantum computation. Phys. Rev. Lett. 89, 097902 (2002)

    Article  ADS  Google Scholar 

  18. Zhu S.-L., Zanardi P.: Geometric quantum gates that are robust against stochastic control errors. Phys. Rev. A 72, 020301(R) (2005)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng-Yuan Xue.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xue, ZY. Fast geometric gate operation of superconducting charge qubits in circuit QED. Quantum Inf Process 11, 1381–1388 (2012). https://doi.org/10.1007/s11128-011-0285-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-011-0285-3

Keywords

Navigation