Skip to main content
Log in

Transcriptional and post-translational control of chlorophyll biosynthesis by dark-operative protochlorophyllide oxidoreductase in Norway spruce

  • Original Article
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

An Erratum to this article was published on 13 March 2017

Abstract

Unlike angiosperms, gymnosperms use two different enzymes for the reduction of protochlorophyllide to chlorophyllide: the light-dependent protochlorophyllide oxidoreductase (LPOR) and the dark-operative protochlorophyllide oxidoreductase (DPOR). In this study, we examined the specific role of both enzymes for chlorophyll synthesis in response to different light/dark and temperature conditions at different developmental stages (cotyledons and needles) of Norway spruce (Picea abies Karst.). The accumulation of chlorophyll and chlorophyll-binding proteins strongly decreased during dark growth in secondary needles at room temperature as well as in cotyledons at low temperature (7 °C) indicating suppression of DPOR activity. The levels of the three DPOR subunits ChlL, ChlN, and ChlB and the transcripts of their encoding genes were diminished in dark-grown secondary needles. The low temperature had minor effects on the transcription and translation of these genes in cotyledons, which is suggestive for post-translational control in chlorophyll biosynthesis. Taking into account the higher solubility of oxygen at low temperature and oxygen sensitivity of DPOR, we mimicked low-temperature condition by the exposure of seedlings to higher oxygen content (33%). The treatment resulted in an etiolated phenotype of dark-grown seedlings, confirming an oxygen-dependent control of DPOR activity in spruce cotyledons. Moreover, light-dependent suppression of mRNA and protein level of DPOR subunits indicates that more efficiently operating LPOR takes over the DPOR function under light conditions, especially in secondary needles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alawady AE, Grimm B (2005) Tobacco Mg-protoporphyrin IX methyltransferase is involved in inverse activation of Mg-porphyrin and protoheme synthesis. Plant J 41:282–290

    Article  CAS  PubMed  Google Scholar 

  • Apitz J, Nishimura K, Schmied J, Grimm B (2016) Posttranslational control of ALA synthesis includes GluTR degradation by Clp protease and stabilization by GluTR-binding protein. Plant Physiol 170:2040–2051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Armstrong GA (1998) Greening in the dark: light-independent chlorophyll biosynthesis from anoxygenic photosynthetic bacteria to gymnosperms. J Photochem Photobiol 43:87–100

    Article  CAS  Google Scholar 

  • Armstrong GA, Runge S, Frick G, Sperling U, Apel K (1995) Identification of NADPH:protochlorophyllide oxidoreductases A and B: a branched pathway for light-dependent chlorophyll biosynthesis in Arabidopsis thaliana. Plant Physiol 108:1505–1517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bauer C (2004) Regulation of photosystem synthesis in Rhodobacter capsulatus. Photosyn Res 80: 353–360.

    Article  CAS  PubMed  Google Scholar 

  • Breznenová K, Demko V, Pavlovič A, Gálová E, Balážová R, Hudák J (2010) Light-independent accumulation of essential chlorophyll biosynthesis- and photosynthesis-related proteins in Pinus mugo and Pinus sylvestris seedlings. Photosynthetica 48:16–22

    Article  Google Scholar 

  • Bröcker MJ, Schomburg S, Heinz DW, Jahn D, Schubert WD, Moser J (2010) Crystal structure of the nitrogenase-like dark-operative protochlorophyllide oxidoreductase catalytic complex (ChlN/ChlB)2. J Biol Chem 285:27336–27345

    Article  PubMed  PubMed Central  Google Scholar 

  • Dalle-Donne I, Rossi R, Giustarini D, Milzani A, Colombo R (2003) Protein carbonyl groups as biomarkers of oxidative stress. Clin Chim Acta 329:23–38

    Article  CAS  PubMed  Google Scholar 

  • Dawson RCM, Elliott DC, Elliott WH, Jones KM (1986) Data for biochemical research. 1986, 3rd edn. Oxford Science Publications

  • Demko V, Pavlovič A, Valková D, Slováková Ľ, Grimm B, Hudák J (2009) A novel insight into regulation of light-independent chlorophyll biosynthesis in Larix decidua and Picea abies seedlings. Planta 230:165–176

    Article  CAS  PubMed  Google Scholar 

  • Demko V, Pavlovič A, Hudák J (2010) Gabaculine alters plastid development and differentially affects abundance of plastid-encoded DPOR and nuclear-encoded GluTR and FLU-like proteins in spruce cotyledons. J Plant Physiol 167:693–700

    Article  CAS  PubMed  Google Scholar 

  • Dražič G, Bogdanovič M (2000) Gabaculine does not inhibit cytokinin-stimulated biosynthesis of chlorophyll in Pinus nigra seedlings in the dark. Plant Sci 154:23–29

    Article  PubMed  Google Scholar 

  • Forreiter C, Apel K (1993) Light-independent and light-dependent protochlorophyllide-reducing activities and two distnict NADPH-protochlorophyllide oxidoreductase polypeptides in mountain pine (Pinus mugo). Planta 190:536–545

    Article  CAS  PubMed  Google Scholar 

  • Fujita Y, Bauer CE (2003) The light-independent protochlorophyllide reductase: a nitrogenase-like enzyme catalyzing a key reaction for greening in the dark. In: Kadish K, Smith K, Guilard R (eds) Porphyrin handbook, vol 13, chlorophylls and bilins: biosynthesis, synthesis, and degradation. Academic Press, San Diego, pp 109–156

    Google Scholar 

  • Gabruk M, Mysliwa-Kurdziel B (2015) Light-dependent protochlorophyllide oxidoreductase: Phylogeny, regulation, and catalytic properties. BioChemistry 54:5255–5262

    Article  CAS  PubMed  Google Scholar 

  • Gabruk M, Grzyb J, Kruk J, Mysliwa-Kurdziel B (2012) Light-dependent and light-independent protochlorophyllide oxidoreductases share similar sequence motifs—In silico studies. Photosynthetica 50:529–540

    Article  CAS  Google Scholar 

  • Garrone A, Archipowa N, Zipfel PF, Hermann G, Dietzek B (2015) Plant protochlorophyllide oxidoreductases A and B—Catalytic efficiency and initial reaction steps. J Biol Chem 290:28530–28539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gehring H, Kasemir H, Mohr H (1977) The capacity of chlorophyll-a biosynthesis in the mustard seedling cotyledons as modulated by phytochrome and circadian rhythmicity. Planta 133:295–302

    Article  CAS  PubMed  Google Scholar 

  • Geider RJ, Delucia EH, Falkowski PG, Finzi AC, Grime JP, Grace J, Kana TM, La Roche J, Long SP, Osborne BA, Platt T, Prentice IC, Raven JA, Schlesinger WH, Smetacek V, Stuart V, Sathyendranath S, Thomas RB, Vogelmann TC, Williams P, Woodward FI (2001) Primary productivity of planet Earth: biological determinants and physical constraints in terrestrial and aquatic habitats. Glob Change Biol 7:849–882.

    Article  Google Scholar 

  • Goslings D, Meskauskiene R, Kim CH, Lee KP, Nater M, Apel K (2004) Concurrent interaction of heme and FLU with Glu tRNA reductase (HEMA1) the target of metabolic feedback inhibition of tetrapyrrole biosynthesis, in dark- and light-grown Arabidopsis plants. Plant J 40:957–967

    Article  CAS  PubMed  Google Scholar 

  • Henry W (1803) Experiments on the quantity of gases absorbed by water, at different temperatures, and under different pressures. Phil Trans R Soc Lond 93:29–274

    Article  Google Scholar 

  • Hobber JK, Argyroudi-Akoyunoglou JH (2004) Assembly of light-harvesting complexes of photosystem II and the role of chlorophyll b. In: Papageorgiou C, Govindjee (eds) Chlorophyll fluorescence: a signature of photosynthesis. Kluwer Academic Publishers, Netherlands, pp 679–712

    Chapter  Google Scholar 

  • Holtorf H, Reinbothe S, Reinbothe C, Bereza B, Apel K (1995) Two routes of chlorophyllide synthesis that are differentially regulated by light in barley (Hordeum vulgare L.). Proc Natl Acad Sci USA 92:3254–3258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang L, Bonner BA, Castelfranco PA (1989) Regulation of 5-aminolevulinic acid (ALA) synthesis in developing chloroplasts. Plant Physiol 90:1003–1008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jansson S, Virgin I, Gustafsson P, Andersson B, Öquist G (1992) Light-induced changes of photosystem II activity in dark-grown Scots pine seedlings. Physiol Plantarum 84:6–12.

    Article  CAS  Google Scholar 

  • Kaschner M, Loeschcke A, Krause J, Minh BQ, Heck A, Endres S, Svensson V, Wirtz A, von Haeseler A, Jaeger KE, Drepper T, Krauss U (2014) Discovery of the first light-dependent protochlorophyllide oxidoreductase in anoxygenic phototrophic bacteria. Mol Microbiol 93:1066–1078

    Article  CAS  PubMed  Google Scholar 

  • Kauss D, Bischof S, Steiner S, Apel K, Meskauskiene R (2012) FLU, a negative feedback regulator of tetrapyrrole biosynthesis, is physically linked to the final steps of Mg++-branch of this pathway. FEBS Lett 586:211–216

    Article  CAS  PubMed  Google Scholar 

  • Koski VM, Smith JHC (1948) The isolation and spectral absorption properties of protochlorophyll from etiolated barley seedlings. J Am Chem Soc 70:3558–3562

    Article  CAS  PubMed  Google Scholar 

  • Kouřil R, Nosek L, Bartoš J, Boekema EJ, Ilík P (2016) Evolutionary loss of light-harvesting proteins Lhcb6 and Lhcb3 in major land plant groups—Break-up of current dogma. New Phytol 210:808–814

    Article  PubMed  Google Scholar 

  • Kruse E, Mock HP, Grimm B (1995) Reduction of coproporphyrinogen oxidase level by antisense RNA-synthesis leads to deregulated gene-expression of plastid proteins and affects the oxidative defense system. EMBO Journal 14:3712–3720

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kruse E, Grimm B, Beator J, Kloppstech K (1997) Developmental and circadian control of the capacity for δ-aminolevulinic acid synthesis in green barley. Planta 202:235–241

    Article  CAS  Google Scholar 

  • Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol 148:350–382

    Article  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Mariani P, De Carli EM, Rascio N, Baldan B, Casadoro G, Gennari G, Bodner M, Larcher W (1990) Synthesis of chlorophyll and photosynthetic competence in etiolated and greening seedlings of Larix decidua as compared with Picea abies. J Plant Physiol 137:5–14

    Article  CAS  Google Scholar 

  • Meskauskiene R, Nater M, Goslings D, Kessler F, Camp R, Apel K (2001) FLU: A negative regulator of chlorophyll biosynthesis in Arabidopsis thaliana. Proc Natl Acad Sci USA 98:12826–12831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mohanty S, Grimm B, Tripathy B (2006) Light and dark modulation of chlorophyll biosynthetic genes in response to temperature. Planta 224:692–699

    Article  CAS  PubMed  Google Scholar 

  • Mukai Y, Tazaki K, Fujii T, Yamamoto N (1992) Light-independent expression of three photosynthetic genes cab, rbcS and rbcL in coniferous plants. Plant Cell Physiol 33:859–866

    CAS  Google Scholar 

  • Muraki N, Nomata J, Ebata K, Mizoguchi T, Shiba T, Temiaki H, Kurisu G, Fujita Y (2010) X-ray crystal structure of the light-independent protochlorophyllide reductase. Nature 465:110–114

    Article  CAS  PubMed  Google Scholar 

  • Muramatsu S, Kojima K, Igasaki T, Azumi Y, Shinohara K (2001) Inhibition of light-independent synthesis of chlorophyll in pine cotyledons at low temperature. Plant Cell Physiol 42:868–872

    Article  CAS  PubMed  Google Scholar 

  • Nakatani HS, Ke B, Dolan E, Arntzen CJ (1984) Identity of the Photosystem II reaction center polypeptide. Biochim Biophys Acta 765:347–352

    Article  CAS  Google Scholar 

  • Nomata J, Terauchi K, Fujita Y (2016) Stoichiometry of ATP hydrolysis and chlorophyllide formation of dark-operative protochlorophyllide oxidoreductase from Rhodobacter capsulatus. Biochem Biophys Res Commun 470:704–709.

    Article  CAS  PubMed  Google Scholar 

  • Nystedt B, Street NR, Wetterbom A, Zuccolo A, Lin Y-Ch, Scofield DG et al (2013) The Norway spruce genome sequence and conifer genome evolution. Nature 497:579–584

    Article  CAS  PubMed  Google Scholar 

  • Oosawa N, Masuda T, Awai K, Fusada N, Shimada H, Ohta H, Takamiya K. (2000) Identification and light-induced expression of a novel gene of NADPH-protochlorophyllide oxidoreductase isoform in Arabidopsis thaliana. FESB Lett 474:133–136.

    Article  CAS  Google Scholar 

  • Óquist G, Huner NPA (2003) Photosynthesis of overwintering evergreen plants. Annu Rev Plant Biol 54:329–355

    Article  PubMed  Google Scholar 

  • Ou K, Adamson H (1995) Chlorophyll accumulation in cotyledons, hypocotyls and primary needles of Pinus pinea seedlings in light and dark. Physiol Plantarum 93:719–724.

    Article  CAS  Google Scholar 

  • Papenbrock J, Grimm B (2001) Regulatory network of tetrapyrrole biosynthesis—Studies of intracellular signalling involved in metabolic and developmental control of plastids. Planta 213:667–681

    Article  CAS  PubMed  Google Scholar 

  • Papenbrock J, Mock HP, Kruse E, Grimm B (1999) Expression studies in tetrapyrrole biosynthesis: inverse maxima of magnesium chelatase and ferrochelatase activity during cyclic photoperiods. Planta 208:264–273

    Article  CAS  Google Scholar 

  • Pavlovič A, Demko V, Durchan M, Hudák J (2009) Feeding with aminolevulinic acid increased chlorophyll content in Norway spruce (Picea abies) in the dark. Photosynthetica 47:510–516

    Article  Google Scholar 

  • Pavlovič A, Stolárik T, Nosek L, Kouřil R, Ilík P (2016) Light-induced gradual activation of photosystem II in dark-grown Norway spruce seedlings. BBA-Bioenerg 1857:799–809.

    Article  Google Scholar 

  • Reinbothe Ch, El Bakkouri M, Buhr F, Muraki N, Nomata J, Kurisu G, Fujita Y, Reinbothe S (2010) Chlorophyll biosynthesis: spotlight on protochlorophyllide reduction. Trends Plant Sci 15:614–624

    Article  CAS  PubMed  Google Scholar 

  • Richter A, Peter E, Pors Y, Lorenzen S, Grimm B, Czarnecki O (2010) Rapid dark repression of 5-aminolevulinic acid synthesis in green barley leaves. Plant Cell Physiol 51:670–681

    Article  CAS  PubMed  Google Scholar 

  • Savitch LV, Ivanov AG, Krol M, Sprott DP, Öquist G, Huner NPA (2010) Regulation of energy partitioning and alternative electron transport pathways during cold acclimation of Lodgepole Pine is oxygen dependent. Plant Cell Physiol 51:1555–1570

    Article  CAS  PubMed  Google Scholar 

  • Schägger H (2006) Tricine-SDS-Page. Nat Protoc 1:16–22

    Article  PubMed  Google Scholar 

  • Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc 3:1101–1108

    Article  CAS  PubMed  Google Scholar 

  • Schoefs B, Franck F (2003) Protochlorophyllide reduction: mechanism and evolution. Photochem Photobiol 78:543–557

    Article  CAS  PubMed  Google Scholar 

  • Selstam E, Widell A, Johansson LB (1987) A comparison of prolamellar bodies from wheat, Scots pine and Jeffrey pine. Pigment spectra and properties of protochlorophyllide oxidoreductase. Physiol Plantarum 70:209–214.

    Article  CAS  Google Scholar 

  • Shinohara K, Ono T, Inoue Y (1992) Photoactivation of oxygen evolving enzyme in dark-grown pine cotyledons: relationship between assembly of photosystem II proteins and integration of manganese and calcium. Plant Cell Physiol 33:281–289

    Article  CAS  Google Scholar 

  • Skinner JS, Timko MP (1998) Loblolly pine (Pinus taeda) contains multiple expressed genes encoding light-dependent NADPH:protochlorophyllide oxidoreductase (POR). Plant Cell Physiol 39:795–806

    Article  CAS  PubMed  Google Scholar 

  • Skinner JS, Timko MP (1999) Differential expression of genes encoding the light-dependent and light-independent enzymes for protochlorophyllide reduction during development in loblolly pine. Plant Mol Biol 39:577–592

    Article  CAS  PubMed  Google Scholar 

  • Stabel P, Sundås A, Engström P (1991) Cytokinin treatment of embryos inhibits the synthesis of chloroplast proteins in Norway spruce. Planta 183:520–527

    Article  CAS  PubMed  Google Scholar 

  • Su Q, Frick G, Armstrong G, Apel K (2001) POR C of Arabidopsis thaliana: a third light- and NADPH-dependent protochlorophyllide oxidoreductase that is differentially regulated by light. Plant Mol Biol 47: 805–813

    Article  CAS  PubMed  Google Scholar 

  • Suzuki T, Takio S, Yamamoto I, Satoh T (2001) Characterization of cDNA of the liverwort phytochrome gene, and phytochrome involvement in the light-dependent and light-independent protochlorophyllide oxidoreductase gene expression in Marchantia paleacea var. diptera. Plant Cell Physiol 42:576–582

    Article  CAS  PubMed  Google Scholar 

  • Tanaka R, Tanaka A (2007) Tetrapyrrole biosynthesis in higher plants. Annu Rev Plant Biol 58:321–346

    Article  CAS  PubMed  Google Scholar 

  • Tewari AK, Tripathy BC (1998) Temperature-stress-induced impairment of chlorophyll biosynthetic reactions in cucumber and wheat. Plant Physiol 117:851–858

    Article  CAS  Google Scholar 

  • Ueda M, Tanaka A, Sugimoto K, Shikanai T, Nishimura Y (2014) chlB requirement for chlorophyll biosynthesis under short photoperiod in Marchantia polymorpha L. Genome Biol Evol 6:620–628

    Article  PubMed  PubMed Central  Google Scholar 

  • van Huystee RB, Hodgins RRW (1989) Chlorophyll synthesis from protochlorophyll(ide) in chill-stressed maize (Zea mays L.). J Exp Bot 40:431–435

    Article  Google Scholar 

  • Xue X, Wang Q, Qu Y, Wu H, Dong F, Cao H, Wang H-L, Xiao J, Shen Y, Wan Y (2017) Development of the photosynthetic apparatus of Cunninghamia lanceolata in light and darkness. New Phytol 213:300–313

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto H, Kurumiya S, Ohashi R, Fujita Y (2009) Oxygen sensitivity of a nitrogenase-like protochlorophyllide reductase from the cyanobacterium Leptolyngbya boryana. Plant Cell Physiol 50:1663–1673

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto H, Kurumiya S, Ohashi R, Fujita Y (2011) Functional evaluation of a nitrogenase-like protochlorophyllide reductase encoded by the chloroplast DNA of Physcomitrella patens in the cyanobacterium Leptolyngbya boryana. Plant Cell Physiol 52:1983–1993

    Article  CAS  PubMed  Google Scholar 

  • Yamazaki S, Nomata J, Fujita Y (2006) Differential operation of dual protochlorophyllide reductases for chlorophyll biosynthesis in response to environmental oxygen levels in the cyanobacterium Leptolyngbya boryana. Plant Physiol 142:911–922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yaronskaya E, Vershilovskaya I, Poers Y, Alawady AE, Averina N, Grimm B (2006) Cytokinin effects on tetrapyrrole biosynthesis and photosynthetic activity in barley seedlings. Planta 224:700–709

    Article  CAS  PubMed  Google Scholar 

  • Zhong S, Zhao M, Shi T, Shi H, An F, Zhao Q (2009) EIN3/EIL1 cooperate with PIF1 to prevent photo-oxidation and to promote greening of Arabidopsis seedlings. Proc Natl Acad Sci USA 106:21431–21436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Program of Sustainability I [Grant LO1204] of the Ministry of Education Youth and Sports of the Czech Republic. We thank prof. Yuichi Fujita (Nagoya, Japan) for kindly providing antibodies against subunits of DPOR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrej Pavlovič.

Additional information

The original version of this article has been revised: The author names have been corrected.

An erratum to this article is available at http://dx.doi.org/10.1007/s11120-017-0368-9.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 4044 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stolárik, T., Hedtke, B., Šantrůček, J. et al. Transcriptional and post-translational control of chlorophyll biosynthesis by dark-operative protochlorophyllide oxidoreductase in Norway spruce. Photosynth Res 132, 165–179 (2017). https://doi.org/10.1007/s11120-017-0354-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-017-0354-2

Keywords

Navigation