Skip to main content
Log in

Acclimation of shade-tolerant and light-resistant Tradescantia species to growth light: chlorophyll a fluorescence, electron transport, and xanthophyll content

  • Original Article
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

In this study, we have compared the photosynthetic characteristics of two contrasting species of Tradescantia plants, T. fluminensis (shade-tolerant species), and T. sillamontana (light-resistant species), grown under the low light (LL, 50–125 µmol photons m−2 s−1) or high light (HL, 875–1000 µmol photons m−2 s−1) conditions during their entire growth period. For monitoring the functional state of photosynthetic apparatus (PSA), we measured chlorophyll (Chl) a emission fluorescence spectra and kinetics of light-induced changes in the heights of fluorescence peaks at 685 and 740 nm (F 685 and F 740). We also compared the light-induced oxidation of P700 and assayed the composition of carotenoids in Tradescantia leaves grown under the LL and HL conditions. The analyses of slow induction of Chl a fluorescence (SIF) uncovered different traits in the LL- and HL-grown plants of ecologically contrasting Tradescantia species, which may have potential ecophysiological significance with respect to their tolerance to HL stress. The fluorometry and EPR studies of induction events in chloroplasts in situ demonstrated that acclimation of both Tradescantia species to HL conditions promoted faster responses of their PSA as compared to LL-grown plants. Acclimation of both species to HL also caused marked changes in the leaf anatomy and carotenoid composition (an increase in Violaxanthin + Antheraxantin + Zeaxanthin and Lutein pools), suggesting enhanced photoprotective capacity of the carotenoids in the plants grown in nature under high irradiance. Collectively, the results of the present work suggest that the mechanisms of long-term PSA photoprotection in Tradescantia are based predominantly on the light-induced remodeling of pigment-protein complexes in chloroplasts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

AL:

Actinic light

A:

Antheraxanthin

Car:

Carotenoid(s)

CBC:

Calvin–Benson cycle

Chl:

Chlorophyll(s)

Cyt:

Cytochrome

DCMU:

3-(3,4-Dichlorophenyl)-1,10-dimethyl urea

DE :

Xanthophyll de-epoxidation index

EPR:

Electron paramagnetic resonance

ETC:

Electron transport chain

F 685 :

Intensity of chlorophyll fluorescence at 685 nm

F 740 :

Intensity of chlorophyll fluorescence at 740 nm

HL:

High light

LHCII:

Light-harvesting complex II

LL:

Low light

Lut:

Lutein

NPQ:

Non-photochemical quenching

OJIP:

Polyphasic fast chlorophyll fluorescence induction

PAM:

Pulse amplitude modulation

Pc:

Plastocyanin

PSA:

Photosynthetic apparatus

PSI:

Photosystem I

PSII:

Photosystem II

PQ:

Plastoquinone

P700 :

Primary electron donor in photosystem I

QA, QB :

Electron acceptors of PSII; primary and secondary plastoquinones

qE:

Rapid (energy-dependent) component of NPQ

qI:

NPQ component related to inactivation of PSII

qM:

Medium component of NPQ

qT:

NPQ component related to state transitions

SIF:

Slow induction of fluorescence

VDE:

Violaxanthin de-epoxidase

V:

Violaxanthin

WL:

White light

Z:

Zeaxanthin

References

  • Adams WW III, Demmig-Adams B (2004) Chlorophyll fluorescence as a tool to monitor plant response to the environment. In: Papageorgiou GC, Govindjee (eds) Chlorophyll a fluorescence. A signature of photosynthesis. Advances in photosynthesis and respiration, vol 19. Springer, Dordrecht, pp 583–604

    Google Scholar 

  • Adamson HY, Chow WS, Anderson JM, Vesk M, Sutherland MW (1991) Photosynthetic acclimation of Tradescantia albiflora to growth irradiance: morphological, ultrastructural and growth responses. Physiol Plant 82:353–359

    Article  Google Scholar 

  • Albanese P, Manfredi M, Meneghesso A, Marengo E, Saracco G, Barber J, Morosinotto T, Pagliano C (2016) Dynamic reorganization of photosystem II supercomplexes in response to variations in light intensities. Biochim Biophys Acta 1857:1651–1660

    Article  CAS  PubMed  Google Scholar 

  • Allakhverdiev SI, Murata N (2004) Environmental stress inhibits the synthesis de novo of proteins involved in the photodamage–repair cycle of photosystem II in Synechocystis sp. PCC 6803. Biochim Biophys Acta 1657:23–32

    Article  CAS  PubMed  Google Scholar 

  • Allen JF (1992) Protein phosphorylation in regulation of photosynthesis. Biochim Biophys Acta 1098:275–335

    Article  CAS  PubMed  Google Scholar 

  • Allen JF (2003) State transitions: a question of balance. Science 299:1530–1532

    Article  CAS  PubMed  Google Scholar 

  • Allorent G, Tokutsu R, Roach T, Peers G, Cardol P, Girard-Bascou J, Seigneurin-Berny D, Petroutsos D, Kuntz M, Breyton C, Franck F, Wollman FA, Niyogi KK, Krieger-Liszkay A, Minagawa J, Finazzi G (2013) A dual strategy to cope with high light in Chlamidomonas reinhardtii. Plant Cell 25:545–557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson J, Chow WS, Goodchild DJ (1988) Thylakoid membrane organisation in sun/shade acclimation. Funct Plant Biol 15:11–26

    Google Scholar 

  • Anderson JM, Chow WS, Park Y-I, Franklin LA, Robinson SP-A, van Hasselt PR (2001) Response of Tradescantia albiflora to growth irradiance: change versus changeability. Photosynth Res 67:103–112

    Article  CAS  PubMed  Google Scholar 

  • Antal TK, Kolacheva A, Maslakov A, Riznichenko GYu, Krendeleva TE, Rubin AB (2013) Study of the effect of reducing conditions on the initial chlorophyll fluorescence rise in the green microalgae Chlamydomonas reinhardtii. Photosynth Res 114:143–154

    Article  CAS  PubMed  Google Scholar 

  • Augustynowicz J, Gabrys H (1999) Chloroplast movement in fern leaves: correlation of movement dynamics and environmental flexibility of the species. Plant Cell Environ 22:1239–1248

    Article  Google Scholar 

  • Baker NR (2008) Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annu Rev Plant Biol 59:89–113

    Article  CAS  PubMed  Google Scholar 

  • Baker NR, Oxborough K (2004) Chlorophyll fluorescence as a probe of photosynthetic productivity. In: Papageorgiou GC, Govindjee (eds) Chlorophyll a fluorescence. A signature of photosynthesis. Advances in Photosynthesis and Respiration, vol 19. Springer, Dordrecht, pp 65–82

    Google Scholar 

  • Ballottari M, Dall’Osto L, Morosinotto T, Bassi R (2007) Contrasting behavior of higher plant photosystem I and II antenna systems during acclimation. J Biol Chem 282:8947–8958

    Article  CAS  PubMed  Google Scholar 

  • Barber J (2008) Crystal structure of the oxygen-evolving complex of photosystem II. Inorg Chem 47:1700–1710

    Article  CAS  PubMed  Google Scholar 

  • Bjorkman O, Demmig B (1987) Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins. Planta 170:489–504

    Article  CAS  PubMed  Google Scholar 

  • Buchanan BB (1980) Role of light in the regulation of chloroplast enzymes. Annu Rev Plant Physiol 31:341–374

    Article  CAS  Google Scholar 

  • Buchanan BB (1991) Regulation of CO2 assimilation in oxygenic photosynthesis: the ferredoxin/thioredoxin system. Perspective on its discovery, present status, and future development. Arch Biochem Biophys 288:1–9

    Article  CAS  PubMed  Google Scholar 

  • Chow WS, Melis A, Anderson JM (1990) Adjustment of photosystems stoichiometry in chloroplasts improve the quantum efficiency of photosynthesis. Proc Natl Acad Sci USA 87:7502–7505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chow WS, Adamson HY, Anderson JM (1991) Photosynthetic acclimation of Tradescantia albiflora to growth irradiance: lack of adjustment of light-harvesting components and its consequences. Physiol Plant 81:175–182

    Article  CAS  Google Scholar 

  • Correa-Galvis V, Redekop P, Guan K, Griess A, Truong TB, Wakao S, Niyogi KK, Jahns P (2016) Photosystem II subunit PsbS is involved in the induction of LHCSR protein-dependent energy dissipation in Chlamydomonas reinhardtii. J Biol Chem 291:17478–17487

    Article  CAS  PubMed  Google Scholar 

  • Dall’Osto L, Cazzaniga S, Wada M, Bassi R (2014) On the origin of a slow reversible fluorescence decay component in the Arabidopsis npq4 mutant. Phyl Trans R Soc B 369:20130221

    Article  CAS  Google Scholar 

  • Davis PA, Caylor S, Whippo CW, Hangarter RP (2011) Changes in leaf optical properties associated with light-dependent chloroplast movements. Plant Cell Environment 34:2047–2059

    Article  CAS  Google Scholar 

  • Delosme R, Olive J, Wollman F-A (1996) Changes in light energy distribution upon state transitions: an in vivo photoacoustic study of the wild type and photosynthesis mutants from Chlamydomonas reinhardtii. Biochim Biophys Acta 1273:150–158

    Article  Google Scholar 

  • Demmig-Adams B (1998) Survey of thermal energy dissipation and pigment composition in sun and shade leaves. Plant Cell Physiol 39:474–482

    Article  CAS  Google Scholar 

  • Demmig-Adams B, Cohu CM, Muller O, Adams WW (2012) Modulation of photosynthetic energy conversion efficiency in nature: from seconds to seasons. Photosynth Res 113:75–88

    Article  CAS  PubMed  Google Scholar 

  • Derks A, Schaven K, Bruce D (2015) Diverse mechanisms for photoprotection in photosynthesis. Dynamic regulation of photosystem II excitation to rapid environmental change. Biochim Biophys Acta 1847:468–485

    Article  CAS  PubMed  Google Scholar 

  • Eberhard S, Finazzi G, Wollman FA (2008) The dynamics of photosynthesis. Annu Rev Genet 42:463–515

    Article  CAS  PubMed  Google Scholar 

  • Edwards GE, Walker DA (1983) C3, C4: mechanisms, and cellular and environmental regulation of photosynthesis. Blackwell, Oxford

    Google Scholar 

  • Foyer CH, Neukermans J, Queval G, Noctor G, Harbinson J (2012) Photosynthetic control of electron transport and the regulation of gene expression. J Exp Bot 63:1637–1661

    Article  CAS  PubMed  Google Scholar 

  • Govindjee (1995) Sixty-three years since Kautsky: chlorophyll a fluorescence. Aust J Plant Physiol 22:131–160

    Article  CAS  Google Scholar 

  • Govindjee (2004) Chlorophyll a fluorescence: a bit of basics and history. In: Papageorgiou GC, Govindjee (eds) Chlorophyll a fluorescence. A signature of photosynthesis. Advances in photosynthesis and respiration, vol 19. Springer, Dordrecht, pp 1–42

    Google Scholar 

  • Horton P (2012) Optimization of light harvesting and photoprotection: molecular mechanisms and physiological consequences. Phil Trans R Soc B 367:3455–3465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horton P, Ruban AV, Walters RG (1996) Regulation of light harvesting in green plants. Annu Rev Plant Physiol Plant Mol Biol 47:655–684

    Article  CAS  PubMed  Google Scholar 

  • Jahns P, Holzwarth AR (2012) The role of the xanthophylls cycle and of lutein in photoprotection of photosystem II. Biochim Biophys Acta 1817:182–193

    Article  CAS  PubMed  Google Scholar 

  • Jahns P., Latowski D., Strzalka K. (2009) Mechanism and regulation of the violaxanthin cycle: the role of antenna proteins and membrane lipids. Biochim Biophys Acta 1787:3–14

    Article  CAS  PubMed  Google Scholar 

  • Järvi S, Gollan PJ, Aro E-M (2013) Understanding the roles of the thylakoid lumen in photosynthetic regulation. Front Plant Sci. doi:10.3389/fpls.2013.00434

    PubMed  PubMed Central  Google Scholar 

  • Johnson GN (2011) Physiology of PSI cyclic electron transport in higher plants. Biochim Biophys Acta 1807:906–911

    Article  CAS  PubMed  Google Scholar 

  • Johnson GN, Young AJ, Scholes JD, Horton P (1993) The dissipation of excess excitation energy in British plant species. Plant Cell Environ 16:673–679

    Article  CAS  Google Scholar 

  • Johnson MP, Goral TK, Duffy CDP, Bran APR, Mullineaux CW, Ruban AV (2011) Photoprotective energy dissipation involves the reorganization of photosystem II light-harvesting complex in the grana membranes of spinach chloroplasts. Plant Cell 23:1468–1479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaiser E, Morales A, Harbinson J, Kromdijk J, Heuvelink E, Marcelis LFM (2015) Dynamic photosynthesis in different environmental conditions. J Exp Botany 66:2415–2426

    Article  CAS  Google Scholar 

  • Kalaji HM, Schansker G, Ladle RJ, Goltsev V, Bosa K, Allakhverdiev SI et al (2014) Frequently asked questions about in vivo chlorophyll fluorescence: practical issues. Photosynth Res 122:121–158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kasahara M, Kagawa T, Oikawa K, Suetsugu N, Miyao M, Wada M (2002) Chloroplast avoidance movement reduces photodamage in plants. Nature 420:829–832

    Article  CAS  PubMed  Google Scholar 

  • Kim E, Ahn TK, Kumazaki S (2015) Changes in antenna sizes of photosystems during state transitions in granal and stroma-exposed thylakoid membrane in intact chloroplasts in Arabidopsis mesophyll protoplasts. Plant Cell Physiol 56:759–768

    Article  CAS  PubMed  Google Scholar 

  • Kirchhoff H (2013) Architectural switches in plant thylakoid membranes. Photosynth Res 116:481–487

    Article  CAS  PubMed  Google Scholar 

  • Königer M, Bollinger N (2011) Changes in leaf optical properties associated with light-dependent chloroplast movements. Plant Cell Environ 34:2047–2059

    Article  CAS  Google Scholar 

  • Königer M, Bollinger N (2012) Chloroplast movement behavior varies widely among species and does not correlate with high light stress tolerance. Planta 236:411–426

    Article  PubMed  CAS  Google Scholar 

  • Kono M, Terashima I (2014) Long-term and short-term responses of the photosynthetic electron transport to fluctuating light. J Photochem Photobiol B 137:89–99

    Article  CAS  PubMed  Google Scholar 

  • Kramer DM, Sacksteder CA, Cruz JA (2003) Balancing the central roles of the thylakoid proton gradient. Trends Plant Sci 8:27–32

    Article  CAS  PubMed  Google Scholar 

  • Kuvykin IV, Ptushenko VV, Vershubskii AV, Tikhonov AN (2011) Regulation of electron transport in C3 plant chloroplasts in situ and in silico: short-term effects of atmospheric CO2 and O2. Biochim Biophys Acta 1807:336–347

    Article  CAS  PubMed  Google Scholar 

  • Lazar D (1999) Chlorophyll a fluorescence induction. Biochim Biophys Acta 1412:1–28

    Article  CAS  PubMed  Google Scholar 

  • Lemeille S, Rochaix J-D (2010) State transitions at the crossroad of thylakoid signaling pathways. Photosynth Res 106:33–46

    Article  CAS  PubMed  Google Scholar 

  • Li X-P, Bjorkman O, Shih C, Grossmann AR, Rosenquist M, Jansson S, Niyogi KK (2000) A pigment-binding protein essential for regulation of photosynthetic light harvesting. Nature 403:391–395

    Article  CAS  PubMed  Google Scholar 

  • Li X-P, Muller-Moule P, Gilmore AM, Niyogi KK (2002) PsbS-dependent enhancement of feedback de-excitation protects photosystem II from photoinhibition. Proc Natl Acad Sci USA 99:15222–15227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X-P, Gilmore AM, Caffarri S, Bassi R, Golan T, Kramer D, Niyogi KK (2004) Regulation of photosynthetic light harvesting involves intrathylakoid lumen pH sensing by the PsbS protein. J Biol Chem 279:22866–22874

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Wakao S, Fischer BB, Niyogi KK (2009) Sensing and responding to excess light. Annu Rev Plant Biol 60:239–260

    Article  CAS  PubMed  Google Scholar 

  • Lichtenthaler HK, Babani F (2004) Light adaptation and senescence of the photosynthetic apparatus. Changes in pigment composition, chlorophyll fluorescence parameters and photosynthetic activity. In: Papageorgiou GC, Govindjee (eds) Chlorophyll a fluorescence: a signature of photosynthesis. Advances in photosynthesis and respiration, vol 19. Springer, Dordrecht, pp 713–736

    Chapter  Google Scholar 

  • Lichtenthaler HK, Ac A, Marek MV, Kalina J, Urban O (2007a) Differences in pigment composition, photosynthetic rates and chlorophyll fluorescence images of sun and shade leaves of four tree species. Plant Physiol Biochem 45:577–588

  • Lichtenthaler HK, Babani F, Langsdorf G (2007b) Chlorophyll fluorescence imaging of photosynthetic activity in sun and shade leaves of trees. Photosynth Res 93:235–241

  • Liu L-X, Chow WS, Anderson JM (1993) Light quality during growth of Tradescantia albiflora regulates photosystem stoichiometry, photosynthetic function and susceptibility to photoinhibition. Physiol Plant 89:854–860

    Article  CAS  Google Scholar 

  • Mamedov M, Govindjee, Nadtochenko V, Semenov A (2015) Primary electron transfer processes in photosynthetic reaction centers from oxygenic organisms. Photosynth Res 125:51–63

    Article  CAS  PubMed  Google Scholar 

  • Matsubara S, Krause GH, Aranda J, Virgo A, Beisel K, Jahns P, Winter K (2009) Sun–shade patterns of leaf carotenoid composition in 86 species of neotropical forest plants. Funct Plant Biol 36:20–36

    Article  CAS  Google Scholar 

  • Matsubara S, Förster B, Waterman M, Robinson SA, Pogson BJ, Gunning B, Osmond B (2012) From ecophysiology to phenomics: some implications of photoprotection and shade–sun acclimation in situ for dynamics of thylakoids in vitro. Phil Trans R Soc B 367:3503–3514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Merzlyak M, Solovchenko A, Pogosyan S (2005) Optical properties of rhodoxanthin accumulated in Aloe arborescens Mill. leaves under high-light stress with special reference to its photoprotective function. Photochem Photobiol Sci 4:333–340

    Article  CAS  PubMed  Google Scholar 

  • Michelet L, Zaffagnini M, Morisse S, Sparla F, Perez-Perez ME, Francia F, Danon A, Marchand CH, Fermani S, Trost P, Lemaire SD (2013) Redox regulation of the Calvin–Benson cycle: something old, something new. Front Plant Sci 4:470. doi:10.3389/fpls.2013.00470

    Article  PubMed  PubMed Central  Google Scholar 

  • Mishanin VI, Trubitsin BV, Benkov MA, Minin AA, Tikhonov AN (2016) Light acclimation of shade-tolerant and light-resistant Tradescantia species: induction of chlorophyll a fluorescence and P700 photooxidation, expression of PsbS and Lhcb1 proteins. Photosynth Res 130:275–291

    Article  CAS  PubMed  Google Scholar 

  • Mitchell P (1966) Chemiosmotic coupling in oxidative and photosynthetic phosphorylation. Biol Rev 41:445–502

    Article  CAS  PubMed  Google Scholar 

  • Miyake C (2010) Alternative electron flows (water-water cycle and cyclic electron flow around PSI) in photosynthesis: molecular mechanisms and physiological functions. Plant Cell Physiol 51:1951–1963

    Article  CAS  PubMed  Google Scholar 

  • Murata N, Allakhverdiev SI, Nishiyama Y (2012) The mechanism of photoinhibition in vivo: re-evaluation of the roles of catalase, α-tocopherol, nonphotochemical quenching, and electron transport. Biochim Biophys Acta 1817:1127–1133

    Article  CAS  PubMed  Google Scholar 

  • Murchie EH, Horton P (1998) Contrasting patterns of photosynthetic acclimation to the light environment are dependent on the differential expression of the responses to altered irradiance and spectral quality. Plant Cell Environ 21:139–148

    Article  Google Scholar 

  • Őquist G, Chow WS, Anderson JM (1992) Photoinhibition of photosynthesis represents a mechanism for the long-term regulation of photosystem II. Planta 186:450–460

    Article  PubMed  Google Scholar 

  • Papageorgiou GC, Tsimilli-Michael M, Stamatakis K (2007) The fast and slow kinetics of chlorophyll a fluorescence induction in plants, algae and cyanobacteria: a viewpoint. Photosynth Res 94:275–290

    Article  CAS  PubMed  Google Scholar 

  • Park Y-I, Chow WS, Anderson JM (1996) Chloroplast movement in the shade plant Tradescantia albiflora helps protect photosystem II against light stress. Plant Physiol 111:867–875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ptushenko VV, Ptushenko EA, Samoilova OP, Tikhonov AN (2013) Chlorophyll fluorescence in the leaves of Tradescantia species of different ecological groups: induction events at different intensities of actinic light. BioSystems 114:85–97

    Article  CAS  PubMed  Google Scholar 

  • Ptushenko VV, Ptushenko OS, Samoilova OP, Solovchenko AE (2016) An exceptional irradiance-induced decrease of light trapping in two Tradescantia species: an unexpected relationship with the leaf architecture and zeaxanthin-mediated photoprotection. Biol Plant 60:385–393

    Article  CAS  Google Scholar 

  • Ptushenko VV, Ptushenko OS, Samoilova OP, Solovchenko AE (2017) Analysis of photoprotection and apparent nonphotochemical quenching of chlorophyll fluorescence in Tradescantia leaves based on the rate of irradiance induced changes in optical transparence. Biochemistry (Moscow) 82:67–74

    Article  CAS  Google Scholar 

  • Randall RP (2012) A global compendium of weeds, 2nd edn. Department of Agriculture and Food, Western Australia, pp 1125

    Google Scholar 

  • Rees D, Young A, Noctor G, Britton G, Horton P (1989) Enhancement of the pH-dependent dissipation of excitation energy in spinach chloroplasts by light activation: correlation with the synthesis of zeaxanthin. FEBS Lett 256:85–90

    Article  CAS  Google Scholar 

  • Rochaix J-D (2014) Regulation and dynamics of the light-harvesting system. Annu Rev Plant Biol 65:287–309

    Article  CAS  PubMed  Google Scholar 

  • Ruban A (2012) The photosynthetic membrane: molecular mechanisms and biophysics of light harvesting. Wiley-Blackwell, Oxford

    Book  Google Scholar 

  • Ruban AV, Johnson MP, Dufy CDP (2012) The photoprotective molecular switch in the photosystem II antenna. Biochim Biophys Acta 1817:167–181

    Article  CAS  PubMed  Google Scholar 

  • Samoilova OP, Ptushenko VV, Kuvykin IV, Kiselev SA, Ptushenko OS, Tikhonov AN (2011) Effects of light environment on the induction of chlorophyll fluorescence in leaves: a comparative study of Tradescantia species of different ecotypes. BioSystems 105:41–48

    Article  CAS  PubMed  Google Scholar 

  • Schansker G, Tόth SZ, Holzwarth AR, Garab G (2014) Chlorophyll a fluorescence: beyond the limits of the QA model. Photosynth Res 120:43–58

    Article  CAS  PubMed  Google Scholar 

  • Schöttler MA, Tόth SZ (2014) Photosynthetic complex stoichiometry dynamics in higher plants: environmental acclimation and photosynthetic flux control. Front Plant Sci 5(188):1–15

    Google Scholar 

  • Siggel U, Renger G, Stiehl HH, Rumberg B (1972) Evidence for electronic and ionic interaction between electron transport chains in chloroplasts. Biochim Biophys Acta 256:328–335

    Article  CAS  PubMed  Google Scholar 

  • Solovchenko A (2010) Photoprotection in plants, Springer series in biophysics, vol 14. Springer, Berlin

    Google Scholar 

  • Solovchenko AE, Chivkunova OB, Merzlyak MN, Reshetnikova IV (2001) A spectrophotometric analysis of pigments in apples. Russ J Plant Physiol 48:693–700

    Article  CAS  Google Scholar 

  • Stirbet A (2013) Excitonic connectivity between photosystem II units: what is it, and how to measure it? Photosynth Res 116:189–214

    Article  CAS  PubMed  Google Scholar 

  • Stirbet A, Govindjee (2011) On the relation between the Kautsky effect (chlorophyll a fluorescence induction) and photosystem II: basics and applications of the OJIP fluorescence transient. J Photochem Photobiol B 104:236–257

    Article  CAS  PubMed  Google Scholar 

  • Stirbet A, Govindjee (2012) Chlorophyll a fluorescence induction: a personal perspective of the thermal phase, the J-I-P rise. Photosynth Res 113:15–61

    Article  CAS  PubMed  Google Scholar 

  • Stirbet A, Govindjee (2016) The slow phase of chlorophyll a fluorescence induction in silico: origin of the S–M fluorescence rise. Photosynth Res 1303:193–213

    Article  CAS  Google Scholar 

  • Strasser RJ, Tsimilli-Michael M, Srivastava A (2004) Analysis of the chlorophyll a fluorescence transients. In: Papageorgiou GC, Govindjee (eds) Chlorophyll a fluorescence: a signature of photosynthesis. Advances in photosynthesis and respiration, vol 19. Springer, Dordrecht, pp 321–362

    Chapter  Google Scholar 

  • Suorsa M, Jarvi S, Grieco M, Nurmi M, Pietrzykowska M, Rantala M, Kangasjarvi S, Paakkarinen V, Tikkanen M, Jansson S, Aro E-M (2012) PROTON GRADIENT REGULATION5 is essential for proper acclimation of Arabidopsis photosystem I to naturally and artificially fluctuating light conditions. Plant Cell 24:2934–2948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Terashima I, Hanba YT, Tazoe Y, Vyas P, Yano S (2006) Irradiance and phenotype: comparative eco-development of sun and shade leaves in relation to CO2 diffusion. J Exp Bot 57:343–354

    Article  CAS  PubMed  Google Scholar 

  • Thayer SS, Björkman O (1990) Leaf xanthophyll content and composition in sun and shade determined by HPLC. Photosynth Res 23:331–343

    Article  CAS  PubMed  Google Scholar 

  • Tikhonov AN (2013) pH-Dependent regulation of electron transport and ATP synthesis in chloroplasts. Photosynth Res 116:511–534

    Article  CAS  PubMed  Google Scholar 

  • Tikhonov AN (2014) The cytochrome b 6 f complex at the crossroad of photosynthetic electron transport pathways. Plant Physiol Biochem 81:163–183

    Article  CAS  PubMed  Google Scholar 

  • Tikhonov AN (2015) Induction events and short-term regulation of electron transport in chloroplasts: an overview. Photosynth Res 125:65–94

    Article  CAS  PubMed  Google Scholar 

  • Tikhonov AN, Ruuge EK (1979) Electron paramagnetic resonance study of electron transport in photosynthetic systems. VIII. The interplay between two photosystems and kinetics of P700 redox transients under various conditions of flash excitation. Molec Biol (Moscow) 13:1085–1097

    CAS  Google Scholar 

  • Tikhonov AN, Vershubskii AV (2017) Connectivity between electron transport complexes and modulation of photosystem II activity in chloroplasts. Photosynth Res. doi:10.1007/s11120-017-0349-z

    Google Scholar 

  • Tikkanen M, Aro E-M (2012) Thylakoid protein phosphorylation in dynamic regulation of photosystem II in higher plants. Biochim Biophys Acta 1817:232–238

    Article  CAS  PubMed  Google Scholar 

  • Tikkanen M, Aro E-M (2014) Integrative regulatory network of plant thylakoid energy transduction. Trends Plant Sci 19:10–17

    Article  CAS  PubMed  Google Scholar 

  • Tikkanen M, Grieco M, Nurmi M, Rantala M, Suorsa M, Aro E-M (2012) Regulation of the photosynthetic apparatus under fluctuating growth light. Philos Trans R Soc Lond B 367:3486–3493

    Article  CAS  Google Scholar 

  • Trubitsin BV, Vershubskii AV, Priklonskii VI, Tikhonov AN (2015) Short-term regulation and alternative pathways of photosynthetic electron transport in Hibiscus rosa-sinensis leaves. J Photochem Photobiol B 152:400–415

    Article  CAS  PubMed  Google Scholar 

  • Vener AV (2007) Environmentally modulated phosphorylation and dynamics of proteins in photosynthetic membranes. Biochim Biophys Acta 1767:449–457

    Article  CAS  PubMed  Google Scholar 

  • Wada M, Kagawa T, Sato Y (2003) Chloroplast movement. Annu Rev Plant Biol 54:455–468

    Article  CAS  PubMed  Google Scholar 

  • Wientjes E, van Amerongen H, Croce R (2013) LHCII is an antenna of both photosystems after long-term acclimation. Biochim Biophys Acta 1827:420–426

    Article  CAS  PubMed  Google Scholar 

  • Woodrow IE, Berry JA (1988) Enzymatic regulation of photosynthetic CO2 fixation in C3 plants. Annu Rev Plant Physiol Plant Mol Biol 39:533–594

    Article  CAS  Google Scholar 

  • Zia A, Johnson MP, Ruban AV (2011) Acclimation- and mutation-induced enhancement of PsbS levels affects the kinetics of non-photochemical quenching in Arabidopsis thaliana. Planta 233:1253–1264

    Article  CAS  PubMed  Google Scholar 

  • Zurzycki J (1955) Chloroplast arrangement as a factor in photosynthesis. Acta Soc Bot Pol 24:27–63

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Russian Foundation for Basic Research (RFBR Project 15-04-03790a). Analysis of carotenoid composition was funded by Russian Science Foundation (RSCF Project 14-50-00029).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander N. Tikhonov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishanin, V.I., Trubitsin, B.V., Patsaeva, S.V. et al. Acclimation of shade-tolerant and light-resistant Tradescantia species to growth light: chlorophyll a fluorescence, electron transport, and xanthophyll content. Photosynth Res 133, 87–102 (2017). https://doi.org/10.1007/s11120-017-0339-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-017-0339-1

Keywords

Navigation