Skip to main content
Log in

In vitro kinetics of P700 + reduction of Thermosynechococcus elongatus trimeric Photosystem I complexes by recombinant cytochrome c 6 using a Joliot-type LED spectrophotometer

  • Original Article
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

The reduction rate of photo-oxidized Photosystem I (PSI) with various natural and artificial electron donors have been well studied by transient absorption spectroscopy. The electron transfer rate from various donors to P700 + has been measured for a wide range of photosynthetic organisms encompassing cyanobacteria, algae, and plants. PSI can be a limiting component due to tedious extraction and purification methods required for this membrane protein. In this report, we have determined the in vivo, intracellular cytochrome c 6 (cyt c 6)/PSI ratio in Thermosynechococcus elongatus (T.e.) using quantitative Western blot analysis. This information permitted the determination of P700 + reduction kinetics via recombinant cyt c 6 in a physiologically relevant ratio (cyt c 6: PSI) with a Joliot-type, LED-driven, pump-probe spectrophotometer. Dilute PSI samples were tested under varying cyt c 6 concentration, temperature, pH, and ionic strength, each of which shows similar trends to the reported literature utilizing much higher PSI concentrations with laser-based spectrophotometer. Our results do however indicate kinetic differences between actinic light sources (laser vs. LED), and we have attempted to resolve these effects by varying our LED light intensity and duration. The standardized configuration of this spectrophotometer will also allow a more uniform kinetic analysis of samples in different laboratories. We can conclude that our findings from the LED-based system display an added total protein concentration effect due to multiple turnover events of P700 + reduction by cyt c 6 during the longer illumination regime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Baker DR, Manocchi AK, Lamicq ML, Li M, Nguyen K, Sumner JJ, Bruce BD, Lundgren CA (2014) Comparative photoactivity and stability of isolated cyanobacterial monomeric and trimeric Photosystem I. J Phys Chem B 118(10):2703–2711

    Article  CAS  PubMed  Google Scholar 

  • Balme A, Hervas M, Campos LA, Sancho J, De la Rosa MA, Navarro JA (2001) A comparative study of the thermal stability of plastocyanin, cytochrome c(6) and photosystem I in thermophilic and mesophilic cyanobacteria. Photosynth Res 70(3):281–289

    Article  CAS  PubMed  Google Scholar 

  • Beissinger M, Sticht H, Sutter M, Ejchart A, Haehnel W, Rosch P (1998) Solution structure of cytochrome c 6 from the thermophilic cyanobacterium Synechococcus elongatus. EMBO J 17(1):27–36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ben-Shem A, Frolow F, Nelson N (2003) Crystal structure of plant photosystem I. Nature 426(6967):630–635

    Article  CAS  PubMed  Google Scholar 

  • Blankenship RE (2002) Molecular mechanisms of photosynthesis. Blackwell, Oxford

    Book  Google Scholar 

  • Bohner H, Bohme H, Boger P (1980) Reciprocal formation of plastocyanin and cytochrome c-553 and the influence of cupric ions on photosynthetic electron transport. Biochim Biophys Acta 592(1):103–112

    Article  CAS  PubMed  Google Scholar 

  • Brettel K, Leibl W (2001) Electron transfer in photosystem I. Biochim Biophys Acta 1507(1–3):100–114

    Article  CAS  PubMed  Google Scholar 

  • Dashdorj N, Xu W, Cohen RO, Golbeck JH, Savikhin S (2005) Asymmetric electron transfer in cyanobacterial Photosystem I: charge separation and secondary electron transfer dynamics of mutations near the primary electron acceptor A0. Biophys J 88(2):1238–1249

    Article  CAS  PubMed  Google Scholar 

  • De la Rosa MA, Navarro JA, Diaz-Quintana A, De la Cerda B, Molina-Heredia FP, Balme A, Murdoch Pdel S, Diaz-Moreno I, Duran RV, Hervas M (2002) An evolutionary analysis of the reaction mechanisms of photosystem I reduction by cytochrome c(6) and plastocyanin. Bioelectrochemistry 55(1–2):41–45

    Article  PubMed  Google Scholar 

  • Diaz-Quintana A, Navarro JA, Hervas M, Molina-Heredia FP, De la Cerda B, De la Rosa MA (2003) A comparative structural and functional analysis of cyanobacterial plastocyanin and cytochrome c (6) as alternative electron donors to Photosystem I. Photosynth Res 75(2):97–110

    Article  CAS  PubMed  Google Scholar 

  • Ellis RJ, Minton AP (2006) Protein aggregation in crowded environments. Biol Chem 387(5):485–497

    Article  CAS  PubMed  Google Scholar 

  • Fromme P, Melkozernov A, Jordan P, Krauss N (2003) Structure and function of photosystem I: interaction with its soluble electron carriers and external antenna systems. FEBS Lett 555(1):40–44

    Article  CAS  PubMed  Google Scholar 

  • Gourovskaya KN, Mamedov MD, Vassiliev IR, Golbeck JH, Semenov AY (1997) Electrogenic reduction of the primary electron donor P700+in photosystem I by redox dyes. FEBS Lett 414(2):193–196

    Article  CAS  PubMed  Google Scholar 

  • Guergova-Kuras M, Boudreaux B, Joliot A, Joliot P, Redding K (2001) Evidence for two active branches for electron transfer in photosystem I. Proc Natl Acad Sci USA 98(8):4437–4442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta R, He Z, Luan S (2002) Functional relationship of cytochrome c(6) and plastocyanin in Arabidopsis. Nature 417(6888):567–571

    Article  CAS  PubMed  Google Scholar 

  • Hatanaka H, Sonoike K, Hirano M, Katoh S (1993) Small subunits of Photosystem I reaction center complexes from Synechococcus elongatus. I. Is the psaF gene product required for oxidation of cytochrome c-553? Biochim Biophys Acta 1141(1):45–51

    Article  CAS  PubMed  Google Scholar 

  • Hervas M, Navarro JA (2011) Effect of crowding on the electron transfer process from plastocyanin and cytochrome c 6 to photosystem I: a comparative study from cyanobacteria to green algae. Photosynth Res 107(3):279–286

    Article  CAS  PubMed  Google Scholar 

  • Hervas M, De la Rosa MA, Tollin G (1992) A comparative laser-flash absorption spectroscopy study of algal plastocyanin and cytochrome c552 photooxidation by photosystem I particles from spinach. Eur J Biochem 203(1–2):115–120

    Article  CAS  PubMed  Google Scholar 

  • Hervas M, Ortega JM, Navarro JA, Delarosa MA, Bottin H (1994) Laser flash kinetic-analysis of synechocystis Pcc-6803 cytochrome C(6) and plastocyanin oxidation by Photosystem-I. Biochim Biophys Acta 1184(2–3):235–241

    Article  CAS  Google Scholar 

  • Hervas M, Navarro JA, Diaz A, Bottin H, De la Rosa MA (1995) Laser-flash kinetic analysis of the fast electron transfer from plastocyanin and cytochrome c 6 to photosystem I. Experimental evidence on the evolution of the reaction mechanism. Biochemistry 34(36):11321–11326

    Article  CAS  PubMed  Google Scholar 

  • Hervas M, Navarro JA, De La Rosa MA (2003) Electron transfer between membrane complexes and soluble proteins in photosynthesis. Acc Chem Res 36(10):798–805

    Article  CAS  PubMed  Google Scholar 

  • Hervas M, Diaz-Quintana A, Kerfeld CA, Krogmann DW, De la Rosa MA, Navarro JA (2005) Cyanobacterial Photosystem I lacks specificity in its interaction with cytochrome c(6) electron donors. Photosynth Res 83(3):329–333

    Article  CAS  PubMed  Google Scholar 

  • Hippler M, Drepper F, Haehnel W, Rochaix JD (1998) The N-terminal domain of PsaF: precise recognition site for binding and fast electron transfer from cytochrome c 6 and plastocyanin to photosystem I of Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 95(13):7339–7344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hippler M, Drepper F, Rochaix JD, Muhlenhoff U (1999) Insertion of the N-terminal part of PsaF from Chlamydomonas reinhardtii into photosystem I from Synechococcus elongatus enables efficient binding of algal plastocyanin and cytochrome c 6. J Biol Chem 274(7):4180–4188

    Article  CAS  PubMed  Google Scholar 

  • Ho KK, Krogmann DW (1984) Electron donors to P700 in cyanobacteria and algae: an instance of unusual genetic variability. Biochim Biophys Acta 766(2):310–316

    Article  CAS  Google Scholar 

  • Iwuchukwu IJ, Vaughn M, Myers N, O’Neill H, Frymier P, Bruce BD (2010) Self-organized photosynthetic nanoparticle for cell-free hydrogen production. Nat Nanotechnol 5(1):73–79

    Article  CAS  PubMed  Google Scholar 

  • Jin MX, Yao ZJ, Mi HL (2001) Multi-phasic kinetics of P700(+) dark re-reduction in Nicotiana tabacum. Photosynthetica 39(3):419–425

    Article  CAS  Google Scholar 

  • Joliot P, Joliot A (1999) In vivo analysis of the electron transfer within photosystem I: are the two phylloquinones involved? Biochemistry 38(34):11130–11136

    Article  CAS  PubMed  Google Scholar 

  • Keren N, Aurora R, Pakrasi HB (2004) Critical roles of bacterioferritins in iron storage and proliferation of cyanobacteria. Plant Physiol 135(3):1666–1673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kirchhoff H (2008) Molecular crowding and order in photosynthetic membranes. Trends Plant Sci 13(5):201–207

    Article  CAS  PubMed  Google Scholar 

  • Kranz R, Lill R, Goldman B, Bonnard G, Merchant S (1998) Molecular mechanisms of cytochrome c biogenesis: three distinct systems. Mol Microbiol 29(2):383–396

    Article  CAS  PubMed  Google Scholar 

  • Li M, Semchonok DA, Boekema EJ, Bruce BD (2014) Characterization and evolution of tetrameric photosystem I from the thermophilic cyanobacterium Chroococcidiopsis sp TS-821. Plant Cell 26(3):1230–1245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lubner CE, Applegate AM, Knorzer P, Ganago A, Bryant DA, Happe T, Golbeck JH (2011) Solar hydrogen-producing bionanodevice outperforms natural photosynthesis. Proc Natl Acad Sci USA 108(52):20988–20991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mamedov MD, Gadzhieva RM, Gourovskaya KN, Drachev LA, Semenov A (1996) Electrogenicity at the donor/acceptor sides of cyanobacterial photosystem I. J Bioenerg Biomembr 28(6):517–522

    Article  CAS  PubMed  Google Scholar 

  • Medina M, Diaz A, Hervas M, Navarro JA, Gomez-Moreno C, de la Rosa MA, Tollin G (1993) A comparative laser-flash absorption spectroscopy study of Anabaena PCC 7119 plastocyanin and cytochrome c 6 photooxidation by photosystem I particles. Eur J Biochem 213(3):1133–1138

    Article  CAS  PubMed  Google Scholar 

  • Molina-Heredia FP, Wastl J, Navarro JA, Bendall DS, Hervas M, Howe CJ, De La Rosa MA (2003) Photosynthesis: a new function for an old cytochrome? Nature 424(6944):33–34

    Article  CAS  PubMed  Google Scholar 

  • Nakamura Y, Kaneko T, Sato S, Ikeuchi M, Katoh H, Sasamoto S, Watanabe A, Iriguchi M, Kawashima K, Kimura T, Kishida Y, Kiyokawa C, Kohara M, Matsumoto M, Matsuno A, Nakazaki N, Shimpo S, Sugimoto M, Takeuchi C, Yamada M, Tabata S (2002) Complete genome structure of the thermophilic cyanobacterium Thermosynechococcus elongatus BP-1. DNA Res 9(4):123–130

    Article  CAS  PubMed  Google Scholar 

  • Nakamura A, Suzawa T, Kato Y, Watanabe T (2011) Species dependence of the redox potential of the primary electron donor p700 in photosystem I of oxygenic photosynthetic organisms revealed by spectroelectrochemistry. Plant Cell Physiol 52(5):815–823

    Article  CAS  PubMed  Google Scholar 

  • Olesen K, Ejdeback M, Crnogorac MM, Kostic NM, Hansson O (1999) Electron transfer to photosystem 1 from spinach plastocyanin mutated in the small acidic patch: ionic strength dependence of kinetics and comparison of mechanistic models. Biochemistry 38(50):16695–16705

    Article  CAS  PubMed  Google Scholar 

  • Proux-Delrouyre V, Demaille C, Leibl W, Setif P, Bottin H, Bourdillon C (2003) Electrocatalytic investigation of light-induced electron transfer between cytochrome c 6 and photosystem I. J Am Chem Soc 125(45):13686–13692

    Article  CAS  PubMed  Google Scholar 

  • Santabarbara S, Heathcote P, Evans MC (2005) Modelling of the electron transfer reactions in Photosystem I by electron tunnelling theory: the phylloquinones bound to the PsaA and the PsaB reaction centre subunits of PS I are almost isoenergetic to the iron-sulfur cluster F(X). Biochim Biophys Acta 1708(3):283–310

    Article  CAS  PubMed  Google Scholar 

  • Schlodder E, Hussels M, Cetin M, Karapetyan NV, Brecht M (2011) Fluorescence of the various red antenna states in photosystem I complexes from cyanobacteria is affected differently by the redox state of P700. Biochim Biophys Acta 1807(11):1423–1431

    Article  CAS  PubMed  Google Scholar 

  • Shinkarev VP, Zybailov B, Vassiliev IR, Golbeck JH (2002) Modeling of the P700+charge recombination kinetics with phylloquinone and plastoquinone-9 in the A1 site of photosystem I. Biophys J 83(6):2885–2897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sommer F, Drepper F, Haehnel W, Hippler M (2006) Identification of precise electrostatic recognition sites between cytochrome c 6 and the photosystem I subunit PsaF using mass spectrometry. J Biol Chem 281(46):35097–35103

    Article  CAS  PubMed  Google Scholar 

  • Takabe T, Ishikawa H, Niwa S, Itoh S (1983) Electron transfer between plastocyanin and P700 in highly-purified photosystem I reaction center complex. Effects of pH, cations, and subunit peptide composition. J Biochem 94(6):1901–1911

    CAS  PubMed  Google Scholar 

  • Wood PM (1978) Interchangeable copper and iron proteins in algal photosynthesis. Studies on plastocyanin and cytochrome c-552 in Chlamydomonas. Eur J Biochem 87(1):9–19

    Article  CAS  PubMed  Google Scholar 

  • Xu W, Chitnis PR, Valieva A, van der Est A, Brettel K, Guergova-Kuras M, Pushkar YN, Zech SG, Stehlik D, Shen G, Zybailov B, Golbeck JH (2003) Electron transfer in cyanobacterial photosystem I:II. Determination of forward electron transfer rates of site-directed mutants in a putative electron transfer pathway from A0 through A1 to FX. J Biol Chem 278(30):27876–27887

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank R. Carter, and Dr. Non Chotewutmontri for critically reading the manuscript. BDB and PDF acknowledge support from TN-SCORE, a multidisciplinary research program sponsored by NSF-EPSCoR (EPS-1004083). KN and B.D.B. acknowledge support from the UTK BCMB Department and from the Gibson Family Foundation. KN was supported as an IGERT Fellow from the National Science Foundation IGERT program (DGE-0801470 to BDB and PDF). BDB and KN also acknowledge support from the Directors Strategic Initiative, “Understanding Photo-system I as a Biomolecular Reactor for Energy Conversion” at the Army Research Laboratory, Adelphi, MD (ARL Contract No. W911NF-11-2-0029).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barry D. Bruce.

Additional information

In memory of our Friend, Colleague, and Mentor, Dr. David B. Knaff.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, K., Vaughn, M., Frymier, P. et al. In vitro kinetics of P700 + reduction of Thermosynechococcus elongatus trimeric Photosystem I complexes by recombinant cytochrome c 6 using a Joliot-type LED spectrophotometer. Photosynth Res 131, 79–91 (2017). https://doi.org/10.1007/s11120-016-0300-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-016-0300-8

Keywords

Navigation