Skip to main content
Log in

Differences in photosynthetic syndromes of four halophytic marsh grasses in Pakistan

  • Original Article
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Salt-tolerant grasses of warm sub-tropical ecosystems differ in their distribution patterns with respect to salinity and moisture regimes. Experiments were conducted on CO2 fixation and light harvesting processes of four halophytic C4 grasses grown under different levels of salinity (0, 200 and 400 mM NaCl) under ambient environmental conditions. Two species were from a high saline coastal marsh (Aeluropus lagopoides and Sporobolus tremulus) and two were from a moderate saline sub-coastal draw-down tidal marsh (Paspalum paspalodes and Paspalidium geminatum). Analyses of the carbon isotope ratios of leaf biomass in plants indicated that carbon assimilation was occurring by C4 photosynthesis in all species during growth under varying levels of salinity. In the coastal species, with increasing salinity, there was a parallel decrease in rates of CO2 fixation (A), transpiration (E) and stomatal conductance (g s), with no effect on water use efficiency (WUE). These species were adapted for photoprotection by an increase in the Mehler reaction with an increase in activity of PSII/CO2 fixed accompanied by high levels of antioxidant enzymes, superoxide dismutase and ascorbate peroxidase. The sub-coastal species P. paspalodes and P. geminatum had high levels of carotenoid pigments and non-photochemical quenching by the xanthophyll cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abey H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  Google Scholar 

  • Ahmed MZ, Shimazaki T, Gulzar S, Kikuchi A, Gul B, Khan MA, Koyro H-W, Huchzermeyer B, Watanabe KN (2013) The influence of genes regulating transmembrane transport of Na+ on the salt resistance of Aeluropus lagopoides. Funct Plant Biol 40:860–871

    CAS  Google Scholar 

  • Akhani H (2006) Biodiversity of halophytic and sabkha ecosystems in Iran. In: Khan MA, Barth H, Kust GC, Boer B (eds) Sabkha ecosystems, vol II. Springer, Netherlands, pp 71–88

    Chapter  Google Scholar 

  • Baaijens GJ, Veldkamp JF (1991) Sporobolus (Gramineae) in Malesia. Blumea 35:393–458

    Google Scholar 

  • Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and an applicable to acrylamide gels. Anal Biochem 44:278–287

    Article  Google Scholar 

  • Bender MM (1971) Variations in the 13C/12C ratios of plants in relation to the pathway of carbon dioxide fixation. Phytochemistry 10:1239–1244

    Article  CAS  Google Scholar 

  • Bender MM, Rouhani I, Vines HM, Black CC Jr (1973) 13C/12C ratio changes in crassulacean acid metabolism. Plant Physiol 52:427–430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bilger W, Björkman O (1990) Role of the xanthophyll cycle in photoprotection elucidated by measurements of light-induced absorbance changes, fluorescence and photosynthesis in Hedera canariensis. Photosynth Res 25:173–185

    Article  CAS  PubMed  Google Scholar 

  • Bilger W, Björkman O (1994) Relationships among violaxanthin deepoxidation, thylakoid membrane conformation, and non-photochemical chlorophyll fluorescence quenching in leaves of cotton (Gossypium hirsutum L.). Planta 193:238–246

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Bromham L, Bennett TH (2014) Salt tolerance evolves more frequently in C4 grass lineages. J Evol Biol 27:653–659

    Article  CAS  PubMed  Google Scholar 

  • Cousins AB, Badger MR, von Caemmerer S (2008) C4 photosynthetic isotope exchange in NAD-ME-and NADP-ME-type grasses. J Exp Bot 59:1695–1703

    Article  CAS  PubMed  Google Scholar 

  • Cruz JA, Avenson TJ, Kanazawa A, Takizawa K, Edwards GE, Kramer DM (2005) Plasticity in light reactions of photosynthesis for energy production and photoprotection. J Exp Bot 56:395–406

    Article  CAS  PubMed  Google Scholar 

  • Duarte B, Santos D, Marques JC, Cacador I (2013) Ecophysiological adaptations of two halophytes to salt stress: photosynthesis, PS II photochemistry and anti-oxidant feedback: Implications for resilience in climate change. Plant Physiol Biochem 67:178–188

    Article  CAS  PubMed  Google Scholar 

  • Edwards G, Walker D (1983) C3, C4: mechanisms, and cellular and environmental regulation, of photosynthesis. University of California Press

  • Edwards EJ, Ogburn RM (2012) Angiosperm responses to a low-CO2 world: CAM and C4 photosynthesis as parallel evolutionary trajectories. Int J Plant Sci 173:724–733

    Article  CAS  Google Scholar 

  • Edwards GE, Franceschi VR, Ku MS, Voznesenskaya EV, Pyankov VI, Andreo CS (2001) Compartmentation of photosynthesis in cells and tissues of C4 plants. J Exp Bot 52:577–590

    Article  CAS  PubMed  Google Scholar 

  • Ehleringer J, Pearcy RW (1983) Variation in quantum yield for CO2 uptake among C3 and C4 plants. Plant Physiol 73:555–559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Epstein E (1972) Mineral nutrition in plants: principles and perspectives. Wiley, New York

  • Erickson E, Wakao S, Niyogi KK (2015) Light stress and photoprotection in Chlamydomonas reinhardtii. Plant J 82:449–465

    Article  CAS  PubMed  Google Scholar 

  • Farquhar GD (1983) On the nature of carbon isotope discrimination in C4 species. Aust J Plant Physiol 10:205–226

    Article  CAS  Google Scholar 

  • Farquhar GD, Ehleringer JR, Hubick KT (1989) Carbon isotope discrimination and photosynthesis. Annu Rev Plant Physiol 40:503–537

    Article  CAS  Google Scholar 

  • Ferrante A, Trivellini A, Malorgio F, Carmassi G, Vernieri P, Serr G (2011) Effect of seawater aerosol on leaves of six plant species potentially useful for ornamental purposes in coastal areas. Sci Hortic (Amsterdam) 128:332–341

    Article  Google Scholar 

  • Genty B, Briantais J-M, Baker NR (1989) The relationship between quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta 990:87–92

    Article  CAS  Google Scholar 

  • Genty B, Harbinson J, Cailly AL, Rizza F (1996) Fate of excitation at PS II in leaves: the non-photochemical side. In: Abstract No. P28, Third BBSRC robert hill symposium on photosynthesis, University of Sheffield, Sheffield, 31 March–3 April 1996

  • Grigore M-N, Ivanescu L, Toma C (2014) Halophytes: an integrative anatomical study. Springer, New York

    Google Scholar 

  • Gul B, Khan MA (1994) Growth, osmoregulation and ion accumulation in the coastal halophyte Arthrocnemum indicum under field conditions. Pak J Mar Sci 3:115–123

    Google Scholar 

  • Gulzar S, Khan MA (1994) Seed banks of coastal shrub communities. Ecoprint 1:1–6

    Google Scholar 

  • Gulzar S, Khan MA (2006) Comparative salt tolerance of perennial grasses. In: Khan MA, Weber DJ (eds) Ecophysiology of high salinity tolerant plants. Springer, Netherlands, pp 239–253

    Chapter  Google Scholar 

  • Hameed A, Khan MA (2011) Halophytes: biology and economic potentials. Kuwait J Sci 39:40–44

    Google Scholar 

  • Henderson S, von Caemmerer S, Farquhar GD (1992) Short-term measurements of carbon isotope discrimination in several C4 species. Aust J Plant Physiol 19:263–285

    Article  CAS  Google Scholar 

  • Horton P, Ruban AV, Walters RG (1996) Regulation of light harvesting in green plants. Annu Rev Plant Phys 47:655–684

    Article  CAS  Google Scholar 

  • Hussin S, Geissler N, Koyro H-W (2013) Effect of NaCl salinity on Atriplex nummularia (L.) with special emphasis on carbon and nitrogen metabolism. Acta Physiol Plant 35:1025–1038

    Article  CAS  Google Scholar 

  • Iyengar ERR, Reddy MP (1996) Photosynthesis in high salt tolerant plants. In: Pesserkali M (ed) Hand book of photosynthesis. Marshal Deker, Baton Rouge, pp 56–65

    Google Scholar 

  • Jaleel CA, Gopi R, Manivannan P, Panneerselvam R (2007) Responses of antioxidant defense system of Catharanthus roseus (L.) G. Don. to paclobutrazol treatment under salinity. Acta Physiol Plant 29:205–209

    Article  Google Scholar 

  • Jaleel CA, Manivannan P, Wahid A, Farooq M, Somasundaram R, Panneerselvam R (2009) Drought stress in plants: a review on morphological characteristics and pigments composition. Int J Agric Biol 11:100–105

    Google Scholar 

  • Jennings DH (1968) Halophytes, succulence and sodium in plants—a unified theory. New Phytol 67:899

    Article  CAS  Google Scholar 

  • Jithesh MN, Prashanth SR, Sivaprakash KR, Parida AK (2006) Antioxidative response mechanisms in halophytes: their role in stress defence. J Genet 85:237–254

    Article  CAS  PubMed  Google Scholar 

  • Khan MA, Gul B (2002) Some ecophysiological aspects of seed germination in halophytes. In: Liu X, Liu M (eds) Halophyte utilization and regional sustainable development of agriculture. Metereological Press, Beijing, pp 56–68

    Google Scholar 

  • Khan MA, Qaiser M (2006) Halophytes of Pakistan: distribution, ecology, and economic importance. In: Khan MA, Barth H, Kust GC, Boer B (eds) Sabkha ecosystems, vol II. Springer, Netherlands, pp 129–153

    Chapter  Google Scholar 

  • Kitajima M, Butler WL (1975) Quenching of chlorophyll fluorescence and primary photochemistry in chloroplasts by dibromothymoquinone. Biochim Biophys Acta 376:105–115

    Article  CAS  PubMed  Google Scholar 

  • Koyro H-W, Hussain T, Huchzermeyer B, Khan MA (2013) Photosynthetic and growth responses of a perennial halophytic grass Panicum turgidum to increasing NaCl concentrations. Environ Exp Bot 91:22–29

    Article  CAS  Google Scholar 

  • Kramer DM, Johnson G, Kiirats O, Edwards GE (2004) New fluorescence parameters for the determination of QA redox state and excitation energy fluxes. Photosynth Res 79:209–218

    Article  CAS  PubMed  Google Scholar 

  • Krieger-Liszkay A (2004) Singlet oxygen production in photosynthesis. J Exp Bot 56:337–346

    Article  PubMed  Google Scholar 

  • Kubasek J, Setlik J, Dwyer S, Santrucek J (2007) Light and growth temperature alter carbon isotope discrimination and estimated bundle-sheath leakiness in C4 grasses and dicots. Photosynth Res 91:47–58

    Article  CAS  PubMed  Google Scholar 

  • Laisk A, Oja V, Rasulov B, Eichelmann H, Sumberg A (1997) Quantum yields and rate constants of photochemical and nonphotochemical excitation quenching. Plant Physiol 115:803–815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee G, Carrow RN, Duncan RR (2004) Photosynthetic responses to salinity stress of halophytic seashore Paspalum ecotypes. Plant Sci 166:1417–1425

    Article  CAS  Google Scholar 

  • Leegood RC, Edwards GE (1996) Carbon metabolism and photorespiration: temperature dependence in relation to other environmental factors. Photosynthesis and the environment. Springer, Netherlands, pp 191–221

    Google Scholar 

  • Leisner CP, Cousins AB, Offermann S, Okita TW, Edwards GE (2010) The effects of salinity on photosynthesis and growth of the single-cell C4 species Bienertia sinuspersici (Chenopodiaceae). Photosynth Res 106:201–214

    Article  CAS  PubMed  Google Scholar 

  • Levitt J (1980) Responses of plants to environmental stresses: water, radiation, salt and other stresses. Academic Press, New York

    Google Scholar 

  • Li XP, Björkman O, Shih C, Grossman AR, Rosenquist M, Jansson S, Niyogi KK (2000) A pigment-binding protein essential for regulation of photosynthetic light harvesting. Nature 403:391–395

    Article  CAS  PubMed  Google Scholar 

  • Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Method Enzymol 148:350–382

    Article  CAS  Google Scholar 

  • LI-COR (2008) Using the LI 6400/LI 6400XT portable photosynthesis system user manual, version 6. LI-COR Biosciences. Inc., Lincoln, Nebraska

    Google Scholar 

  • Lovelock C, Ball M (2002) Influence of salinity on photosynthesis of halophytes. In: Lauchli A, Luttge U (eds) Salinity: environment—plants—molecules. Kluwer Academic Publishers, Netherlands, pp 315–339

    Google Scholar 

  • Maricle BR, Lee RW, Hellquist CE, Kiirats O, Edwards GE (2007) Effects of salinity on chlorophyll fluorescence and CO2 fixation in C4 estuarine grasses. Photosynthetica 45:433–440

    Article  CAS  Google Scholar 

  • Mateos-Naranjo E, Redondo-Gómez S (2016) Interpopulation differences in salinity tolerance of the invasive cordgrass Spartina densiflora: implications for invasion process. Estuar Coasts 39:98–107

    Article  CAS  Google Scholar 

  • Maxwell K, Johnson GN (2000) Chlorophyll fluorescence—a practical guide. J Exp Bot 51:659–668

    Article  CAS  PubMed  Google Scholar 

  • Mehler AH (1957) Studies on reactions of illuminated chloroplasts. I. Mechanism of the reduction of oxygen and other Hill reagents. Arch Biochem Biophys 33:65–77

    Article  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  CAS  PubMed  Google Scholar 

  • Moinuddin M, Gulzar S, Ahmed MZ, Gul B, Koyro HW, Khan MA (2014) Excreting and non-excreting grasses exhibit different salt resistance strategies. AoB Plants 6:plu038

    Article  PubMed  PubMed Central  Google Scholar 

  • Müller P, Li XP, Niyogi KK (2001) Non-photochemical quenching: a response to excess light energy. Plant Physiol 125:1558–1566

    Article  PubMed  PubMed Central  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  • Murata N, Mohanty PS, Hayashi H, Papageorgiou GC (1992) Glycinebetaine stabilizes the association of extrinsic proteins with the photosynthetic oxygen-evolving complex. GFEBS Letters 296:187–189

    Article  CAS  Google Scholar 

  • Naidoo GS, Mundree G (1993) Relationship between morphological and physiological responses to waterlogging and salinity in Sporobolus virginicus (L.) Kunth. Oecologia 93:360–366

    Article  Google Scholar 

  • Naidoo G, Somaru R, Achar P (2008) Morphological and physiological responses of the halophyte, Odyssea paucinervis (Stapf) (Poaceae) to salinity. Flora 203:437–447

    Article  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  • Nayyar H, Gupta D (2006) Differential sensitivity of C3 and C4 plants to water deficit stress: association with oxidative stress and antioxidants. Environ Exp Bot 58:106–113

    Article  CAS  Google Scholar 

  • Naz N, Hameed M, Ashraf M, Al-Qurainy F, Arshad M (2010) Relationships between gas-exchange characteristics and stomatal structural modifications in some desert grasses under high salinity. Photosynthetica 48:446–456

    Article  Google Scholar 

  • Nippert JB, Fay PA, Knapp AK (2007) Photosynthetic traits in C3 and C4 grassland species in mesocosm and field environments. Environ Exp Bot 60:412–420

    Article  CAS  Google Scholar 

  • Noguchi T (2002) Dual role of triplet localization on the accessory chlorophyll in the photosystem II reaction center: photoprotection and photodamage of the D1 protein. Plant Cell Physiol 43:1112–1116

    Article  CAS  PubMed  Google Scholar 

  • Oberhuber W, Dai Z-Y, Edwards GE (1993) Light dependence of quantum yields of photosystem II and CO2 fixation in C3 and C4 plants. Photosynth Res 35:265–274

    Article  CAS  PubMed  Google Scholar 

  • Osmond CB (1994) What is photoinhibition: some insights from comparisons of sun and shade plants. In: Baker NR, Bowyer JR (eds) Photoinhibition: molecular mechanisms to the field. Bios Scientific Publishers, Oxford, pp 1–24

    Google Scholar 

  • Owens TG (1996) Processing of excitation energy by antenna pigments. In: Baker NR (ed) Advances in photosynthesis: photosynthesis and the environment, vol 5. Kluwer Academic Publishers, Dordrecht, pp 1–23

    Chapter  Google Scholar 

  • Polle A, Otter T, Seifert F (1994) Apoplastic peroxidases and lignification in needles of spruce (Picea abies L.). Plant Physiol 106:53–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pyankov VI, Ziegler H, Akhani H, Deigele C, Luttge U (2010) European plants with C4 photosynthesis: geographical and taxonomic distribution and relations to climate parameters. Bot J Linn Soc 163:283–304

    Article  Google Scholar 

  • Radhakrishnan M, Waisel Y, Sternberg M (2006) Kikuyu grass: a valuable salt-tolerant fodder grass. Commun Soil Sci Plant Anal 37:1269–1280

    Article  CAS  Google Scholar 

  • Rondeau P, Rouch C, Besnard G (2005) NADP-malate dehydrogenase gene evolution in Andropogoneae (Poaceae): gene duplication followed by sub-functionalization. Ann Bot 96:1307–1314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sage FR (2002) Variation in the k cat of Rubisco in C3 and C4 plants and some implications for photosynthetic performance at high and low temperature. J Exp Bot 53:609–620

    Article  CAS  PubMed  Google Scholar 

  • Sage RF, Stata M (2015) Photosynthetic diversity meets biodiversity: the C4 plant example. J Plant Physiol 172:104–119

    Article  CAS  PubMed  Google Scholar 

  • Sage RF, Li M, Monson RK (1999) The taxonomic distribution of C4 photosynthesis. In: Sage RF, Monson RK (eds) C4 plant biology. Academic Press, San Diego, pp 551–584

    Chapter  Google Scholar 

  • Salama S, Trivedi S, Busheva M, Arafa AA, Garab G, Eredei L (1994) Effect of NaCl salinity on growth, cation accumulation, chloroplast structure and function in wheat cultivars differing in salt tolerance. J Plant Physiol 144:241–247

    Article  CAS  Google Scholar 

  • Seckin B, Turkan I, Sekmen AH, Ozfidan C (2010) The role of antioxidant defense systems at differential salt tolerance of Hordeum marinum Huds. (sea barleygrass) and Hordeum vulgare L. (cultivated barley). Environ Exp Bot 69:76–85

    Article  CAS  Google Scholar 

  • Sobhanian H, Motamed N, Jazii FR, Nakamura T, Komatsu S (2010) Salt stress induced differential proteome and metabolome response in the shoots of Aeluropus lagopoides (Poaceae), a halophyte C4 plant. J Proteom Res 9:2882–2897

    Article  CAS  Google Scholar 

  • Stepien P, Johnson GN (2009) Contrasting responses of photosynthesis to salt stress in the glycophyte Arabidopsis and the halophyte Thellungiella: role of the plastid terminal oxidase as an alternative electron sink. Plant Physiol 149:1154–1165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taiz L, Zeiger E (2010) Plant physiology, 5th edn. Sinauer Associates, Inc Publishers, Sunderland

    Google Scholar 

  • Terashima I, Fujita T, Inoue T, Chow WS, Oguchi R (2009) Green light drives leaf photosynthesis more efficiently than red light in strong white light: revisiting the enigmatic question of why leaves are green. Plant Cell Physiol 50:684–697

    Article  CAS  PubMed  Google Scholar 

  • van Kooten O, Snel JFH (1990) Progress in fluorescence research and nomenclature for quenching analysis. Photosynth Res 25:147–150

    Article  PubMed  Google Scholar 

  • Voznesenskaya EV, Franceschi VR, Kiirats O, Artyusheva EG, Freitag H, Edwards GE (2002) Proof of C4 photosynthesis without Kranz anatomy in Bienertia cycloptera (Chenopodiaceae). Plant J 31:649–662

    Article  CAS  PubMed  Google Scholar 

  • Wang KY, Kellomäki S, Zha T (2003) Modifications in photosynthetic pigments and chlorophyll fluorescence in 20-year-old Pine trees after a four-year Exposure to carbon dioxide and temperature elevation. Photosynthetica 41:167–175

    Article  CAS  Google Scholar 

  • Wei Y, Xu X, Tao H, Wang P (2006) Growth performance and physiological response in the halophyte Lycium barbarum grown at salt-affected soil. Ann Appl Biol 149:263–269

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors would like to thank Higher Education Commission, Islamabad for Financial Support, for awarding a post doctoral fellowship to SG, and partial support from the National Science Foundation under MCB#1146928. We are also grateful to Prof. Hans-Werner Koyro, Rita Giuliani and Richard Sharpe for valuable discussions. Help of Aysha Rasheed, Zain-ul-Abideen and Sarwat Ghulam Rasool for gas exchange and fluorescence readings and of Hina Siddiqui for enzyme analyses is also gratefully acknowledged. Climate data was obtained courtesy of the Pakistan Meteorological Department.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerald E. Edwards.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 46 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moinuddin, M., Gulzar, S., Hameed, A. et al. Differences in photosynthetic syndromes of four halophytic marsh grasses in Pakistan. Photosynth Res 131, 51–64 (2017). https://doi.org/10.1007/s11120-016-0296-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-016-0296-0

Keywords

Navigation