Skip to main content
Log in

Influence of light and nitrogen on the photosynthetic efficiency in the C4 plant Miscanthus × giganteus

  • Original Article
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

There are numerous studies describing how growth conditions influence the efficiency of C4 photosynthesis. However, it remains unclear how changes in the biochemical capacity versus leaf anatomy drives this acclimation. Therefore, the aim of this study was to determine how growth light and nitrogen availability influence leaf anatomy, biochemistry and the efficiency of the CO2 concentrating mechanism in Miscanthus × giganteus. There was an increase in the mesophyll cell wall surface area but not cell well thickness in the high-light (HL) compared to the low-light (LL) grown plants suggesting a higher mesophyll conductance in the HL plants, which also had greater photosynthetic capacity. Additionally, the HL plants had greater surface area and thickness of bundle-sheath cell walls compared to LL plants, suggesting limited differences in bundle-sheath CO2 conductance because the increased area was offset by thicker cell walls. The gas exchange estimates of phosphoenolpyruvate carboxylase (PEPc) activity were significantly less than the in vitro PEPc activity, suggesting limited substrate availability in the leaf due to low mesophyll CO2 conductance. Finally, leakiness was similar across all growth conditions and generally did not change under the different measurement light conditions. However, differences in the stable isotope composition of leaf material did not correlate with leakiness indicating that dry matter isotope measurements are not a good proxy for leakiness. Taken together, these data suggest that the CO2 concentrating mechanism in Miscanthus is robust under low-light and limited nitrogen growth conditions, and that the observed changes in leaf anatomy and biochemistry likely help to maintain this efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Barbour MM, Evans JR, Simonin KA, von Caemmerer S (2016) Online CO2 and H2O oxygen isotope fractionations allows estimation of mesophyll conductance in C4 plants, and reveals that mesophyll conductance decreases as leaves age in both C4 and C3 plants. New Phytologist

  • Bellasio C, Griffiths H (2014a) Acclimation of C4 metabolism to low light in mature maize leaves could limit energetic losses during progressive shading in a crop canopy. J Exp Bot 65:3725–3736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bellasio C, Griffiths H (2014b) Acclimation to low light by C4 maize: implications for bundle sheath leakiness. Plant Cell Environ 37:1046–1058

    Article  CAS  PubMed  Google Scholar 

  • Bellasio C, Griffiths H (2014c) The operation of two decarboxylases, transamination, and partitioning of C4 metabolic processes between mesophyll and bundle sheath cells allows light capture to be balanced for the maize C4 pathway. Plant Physiol 164:466–480

    Article  CAS  PubMed  Google Scholar 

  • Bowling DR, Sargent SD, Tanner BD, Ehleringer JR (2003) Tunable diode laser absorption spectroscopy for stable isotope studies of ecosystem-atmosphere CO2 exchange. Agric For Meteorol 118:1–19

    Article  Google Scholar 

  • Clifton-Brown JC, Breuer J, Jones MB (2007) Carbon mitigation by the energy crop, Miscanthus. Glob Change Biol 13:2296–2307

    Article  Google Scholar 

  • Cousins AB, Badger MR, Von Caemmerer S (2006) Carbonic anhydrase and its influence on carbon isotope discrimination during C4 photosynthesis. Insights from antisense RNA in Flaveria bidentis. Plant Physiol 141:232–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cousins AB, Badger MR, von Caemmerer S (2008) C4 photosynthetic isotope exchange in NAD-ME- and NADP-ME-type grasses. J Exp Bot 59:1695–1703

    Article  CAS  PubMed  Google Scholar 

  • Ellsworth PZ, Cousins AB (2016) Carbon isotopes and water use efficiency in C4 plants. Curr Opin Plant Biol 31:155–161

    Article  CAS  PubMed  Google Scholar 

  • Evans JR, Sharkey TD, Berry JA, Farquhar GD (1986) Carbon isotope discrimination measured concurrently with gas exchange to investigate CO2 diffusion in leaves of higher plants. Aust J Plant Physiol 13:281–292

    Article  CAS  Google Scholar 

  • Evans JR, von Caemmerer S, Setchell BA, Hudson GS (1994) The Relationship between CO2 Transfer Conductance and Leaf Anatomy in Transgenic Tobacco with a Reduced Content of Rubisco. Aust J Plant Physiol 21:475–495

    Article  CAS  Google Scholar 

  • Farage PK, Blowers D, Long SP, Baker NR (2006) Low growth temperatures modify the efficiency of light use by photosystem II for CO2 assimilation in leaves of two chilling-tolerant C4 species, Cyperus longus L. and Miscanthus x giganteus. Plant Cell Environ 29:720–728

    Article  CAS  PubMed  Google Scholar 

  • Farquhar GD (1983) On the nature of carbon isotope discrimination in C4 species. Aust J Plant Physiol 10:205–226

    Article  CAS  Google Scholar 

  • Farquhar GD, Cernusak LA (2012) Ternary effects on the gas exchange of isotopologues of carbon dioxide. Plant Cell Environ 35:1221–1231

    Article  CAS  PubMed  Google Scholar 

  • Flexas J, Carriqui M, Coopman RE, Gago J, Galmes J, Martorell S, Morales F, Diaz-Espejo A (2014) Stomatal and mesophyll conductances to CO2 in different plant groups: underrated factors for predicting leaf photosynthesis responses to climate change? Plant Sci 226:41–48

    Article  CAS  PubMed  Google Scholar 

  • Ghashghaie J, Duranceau M, Badeck F-W (2001) δ13C of CO2 respired in the dark in relation to δ13C of leaf metabolites: comparison between Nicotiana sylvestris and Helianthus annuus under drought. Plant Cell Environ 24:505–515

    Article  CAS  Google Scholar 

  • Gillon JS, Yakir D (2000) Naturally low carbonic anhydrase activity in C4 and C3 plants limits discrimination against (COO)-O18 during photosynthesis. Plant Cell Environ 23:903–915

    Article  CAS  Google Scholar 

  • Hansen EM, Christensen BT, Jensen LS, Kristensen K (2004) Carbon sequestration in soil beneath long-term Miscanthus plantations as determined by C13 abundance. Biomass Bioenergy 26:97–105

    Article  CAS  Google Scholar 

  • Harholt J, Jensen JK, Sorensen SO, Orfila C, Pauly M, Scheller HV (2006) ARABINAN DEFICIENT 1 is a putative arabinosyltransferase involved in biosynthesis of pectic arabinan in Arabidopsis. Plant Physiol 140:49–58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hatch MD, Slack CR, Johnson HS (1967) Further studies on a new pathway of photosynthetic carbon dioxide fixation in sugarcane and its occurence in other plant species. Biochem J 102:417–422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hatch MD, Agostino A, Jenkins CLD (1995) Measurement of the leakage of CO2 from bundle-sheath cells of leaves during C4 photosynthesis. Plant Physiol 108:173–181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heaton EA, Long SP, Voigt TB, Jones MB, Clifton-Brown J (2004) Miscanthus for renewable energy generation: European Union experience and projections for Illinois. Mitig Adapt Strat Glob Change 9:433–451

    Article  Google Scholar 

  • Henderson SA, von Caemmerer S, Farquhar GD (1992) Short-Term Measurements of Carbon Isotope Discrimination in Several C4 Species. Aust J Plant Physiol 19:263–285

    Article  CAS  Google Scholar 

  • Kromdijk J, Schepers HE, Albanito F, Fitton N, Carroll F, Jones MB, Finnan J, Lanigan GJ, Griffiths H (2008) Bundle Sheath Leakiness and Light Limitation during C4 Leaf and Canopy CO2 Uptake. Plant Physiol 148:2144–2155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kromdijk J, Griffiths H, Schepers HE (2010) Can the progressive increase of C4 bundle sheath leakiness at low PFD be explained by incomplete suppression of photorespiration? Plant Cell Environ 33:1935–1948

    Article  CAS  PubMed  Google Scholar 

  • Kromdijk J, Ubierna N, Cousins AB, Griffiths H (2014) Bundle-sheath leakiness in C4 photosynthesis: a careful balancing act between CO2 concentration and assimilation. J Exp Bot 65:3443–3457

    Article  PubMed  Google Scholar 

  • Kubásek J, Šetlík J, Dwyer S, Šantruc J (2007) Light and growth temperature alter carbon isotope discrimination and estimated bundle sheath leakiness in C4 grasses and dicots. Photosynth Res 91:47–58

    Article  PubMed  Google Scholar 

  • Meinzer FC, Zhu J (1998) Nitrogen stress reduces the efficiency of the C4 CO2 concentrating system, and therefore quantum yield, in Saccharum (sugarcane) species. J Exp Bot 49:1227–1234

    CAS  Google Scholar 

  • Naidu SL, Long SP (2004) Potential mechanisms of low-temperature tolerance of C4 photosynthesis in Miscanthus × giganteus: an in vivo analysis. Planta 220:145–155

    Article  CAS  PubMed  Google Scholar 

  • ØBro J, Harholt J, Scheller HV, Orfila C (2004) Rhamnogalacturonan I in Solanum tuberosum tubers contains complex arabinogalactan structures. Phytochemistry 65:1429–1438

    Article  PubMed  Google Scholar 

  • Pengelly JJ, Sirault XRR, Tazoe Y, Evans JR, Furbank RT, von Caemmerer S (2010) Growth of the C4 dicot Flaveria bidentis: photosynthetic acclimation to low light through shifts in leaf anatomy and biochemistry. J Exp Bot 61:4109–4122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Porra RJ, Thompson WA, Kriedemann PE (1989) Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents, verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochim Biophys Acta 975:384–394

    Article  CAS  Google Scholar 

  • Sage RF (2014) Stopping the leaks: new insights into C4 photosynthesis at low light. Plant Cell Environ 37:1037–1041

    Article  CAS  PubMed  Google Scholar 

  • Scheller HV, Jensen JK, Sorensen SO, Harholt J, Geshi N (2007) Biosynthesis of pectin. Physiol Plantarum 129:283–295

    Article  CAS  Google Scholar 

  • Sims REH, Hastings A, Schlamadinger B, Taylor G, Smith P (2006) Energy crops: current status and future prospects. Glob Change Biol 12:2054–2076

    Article  Google Scholar 

  • Stutz SS, Edwards GE, Cousins AB (2014) Single-cell C4 photosynthesis: efficiency and acclimation of Bienertia sinuspersici to growth under low light. New Phytol 202:220–232

    Article  CAS  PubMed  Google Scholar 

  • Sun W, Ubierna N, Ma J-Y, Cousins AB (2012) The influence of light quality on C4 photosynthesis under steady-state conditions in Zea mays and Miscanthus × giganteus: changes in rates of photosynthesis but not the efficiency of the CO2 concentrating mechanism. Plant Cell Environ 35:982–993

    Article  CAS  PubMed  Google Scholar 

  • Sun W, Ubierna N, Ma J-Y, Walker B, Kramer D, Cousins AB (2014) The coordination of C4 photosynthesis and the CO2 concentrating mechanism in Zea mays and Miscanthus × giganteus in response to transient changes in light quality. Plant Physiol 164:1283–1292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tazoe Y, Noguchi K, Terashima I (2006) Effects of growth light and nitrogen nutrition on the organization of the photosynthetic apparatus in leaves of a C4 plant, Amaranthus cruentus. Plant Cell Environ 29:691–700

    Article  CAS  PubMed  Google Scholar 

  • Tazoe Y, Hanba YT, Furumoto T, Noguchi K, Terashima I (2008) Relationships between quantum yield for CO2 assimilation, activity of key enzymes and CO2 leakiness in Amaranthus cruentus, a C4 dicot, grown in high or low light. Plant Cell Physiol 49:19–29

    Article  CAS  PubMed  Google Scholar 

  • Ubierna N, Sun W, Cousins AB (2011) The efficiency of C4 photosynthesis under low light conditions: assumptions and calculations with CO2 isotope discrimination. J Exp Bot 61:3119–3134

    Article  Google Scholar 

  • Ubierna N, Sun W, Kramer DM, Cousins AB (2013) The efficiency of C4 photosynthesis under low light conditions in Zea mays, Miscanthus × giganteus and Flaveria bidentis. Plant Cell Environ 36:365–381

    Article  CAS  PubMed  Google Scholar 

  • von Caemmerer S (2000) Biochemical models of leaf photosynthesis. CSIRO Publishing, Victoria

    Google Scholar 

  • von Caemmerer S, Furbank RT (2003) The C4 pathway: an efficient CO2 pump. Photosynth Res 77:191–207

    Article  Google Scholar 

  • von Caemmerer S, Evans JR, Cousins AB, Badger MR, Furbank RT (2008) C4 photosynthesis and CO2 diffusion. In: Sheehy JE, Mitchell PL, Hardy B (eds) Charting New Pathways to C4 Rice. International Rice Research Institue, Los Bos

    Google Scholar 

  • von Caemmerer S, Ghannoum O, Pengelly JJ, Cousins AB (2014) Carbon isotope discrimination as a tool to explore C4 photosynthesis. J Exp Bot 65:3459–3470

    Article  Google Scholar 

  • Wang D, Portis AR, Moose SP, Long SP (2008) Cool C4 photosynthesis: pyruvate Pi dikinase expression and activity corresponds to the exceptional cold tolerance of carbon assimilation in Miscanthus × giganteus. Plant Physiol 148:557–567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin Z, van der Putten PEL, Driever SM, Struik PC (2016) Temperature response of bundle-sheath conductance in maize leaves. J Exp Bot. doi:10.1083/jxb/era104

    Google Scholar 

Download references

Acknowledgments

This research was supported by the National Natural Science Foundation of China [Grant Nos. 41071032, 31270445], the 9th Thousand Talents Program of China, the US Department of Energy, Office of Basic Energy Science [DE-FG02_09ER16062] and Office of Science, Office of Biological and Environmental Research [DE-AC02-05CH11231]. Instrumentation was obtained through an NSF Major Research Instrumentation Grant [#0923562]. JLH was supported by an Australian Research Council Future Fellowship [FT130101165]. We thank C. Cody for plants growth management, Dr. Steve Long for Miscanthus plant material and the Franceschi Microscopy and Imaging Center of Washington State University for use of its facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asaph B. Cousins.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 174 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, JY., Sun, W., Koteyeva, N.K. et al. Influence of light and nitrogen on the photosynthetic efficiency in the C4 plant Miscanthus × giganteus . Photosynth Res 131, 1–13 (2017). https://doi.org/10.1007/s11120-016-0281-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-016-0281-7

Keywords

Navigation