Skip to main content
Log in

Effects of exogenous β-carotene, a chemical scavenger of singlet oxygen, on the millisecond rise of chlorophyll a fluorescence of cyanobacterium Synechococcus sp. PCC 7942

  • Original Article
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Singlet-excited oxygen (1O *2 ) has been recognized as the most destructive member of the reactive oxygen species (ROS) which are formed during oxygenic photosynthesis by plants, algae, and cyanobacteria. ROS and 1O *2 are known to damage protein and phospholipid structures and to impair photosynthetic electron transport and de novo protein synthesis. Partial protection is afforded to photosynthetic organism by the β-carotene (β-Car) molecules which accompany chlorophyll (Chl) a in the pigment-protein complexes of Photosystem II (PS II). In this paper, we studied the effects of exogenously added β-Car on the initial kinetic rise of Chl a fluorescence (10–1000 μs, the OJ segment) from the unicellular cyanobacterium Synechococcus sp. PCC7942. We show that the added β-Car enhances Chl a fluorescence when it is excited at an intensity of 3000 μmol photons m−2 s−1 but not when excited at 1000 μmol photons m−2 s−1. Since β-Car is an efficient scavenger of 1O *2 , as well as a quencher of 3Chl a * (precursor of 1O *2 ), both of which are more abundant at higher excitations, we assume that the higher Chl a fluorescence in its presence signifies a protective effect against photo-oxidative damages of Chl proteins. The protective effect of added β-Car is not observed in O2-depleted cell suspensions. Lastly, in contrast to β-Car, a water-insoluble molecule, a water-soluble scavenger of 1O *2 , histidine, provides no protection to Chl proteins during the same time period (10–1000 μs).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

β-Car:

β-Carotene

Chl:

Chlorophyll

DCMU:

3-(3,4-Dichlorophenyl)-1,1-dimethylurea

DMSO:

Dimethyl sulfoxide

GO:

Glucose oxidase

PS I, PS II:

Photosystem I, photosystem II

PQ-pool:

Plastoquinones shuttling electrons between PS II and PS I

ROS:

Reactive oxygen species

References

  • Allakhverdiev SI, Murata N (2004) Environmental stress inhibits the synthesis de novo of proteins involved in the photodamage-repair cycle of photosystem II in Synechocystis sp. PCC 6803. Biochim Biophys Acta 1657:23–32

    Article  CAS  PubMed  Google Scholar 

  • Asada K (1999) The water–water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Ann Rev Plant Physiol Plant Mol Biol 50:601–639

    Article  CAS  Google Scholar 

  • Belyaeva NE, Schmitt F-J, Steffen R, Paschenko VZ, Riznichenko GY, Chemeris YK, Renger G, Rubin AB (2008) PS II model-based simulations of single turnover flash-induced transients of fluorescence yield monitored within the time domain of 100 ns-10 s on dark-adapted Chlorella pyrenoidosa cells. Photosynth Res 98:105–119

    Article  CAS  PubMed  Google Scholar 

  • Belyaeva NE, Schmitt F-J, Paschenko VZ, Riznichenko GY, Rubin AB, Renger G (2011) PS II model based analysis of transient fluorescence yield measured on whole leaves of Arabidopsis thaliana after excitation with light flashes of different energies. BioSystems 103:188–195

    Article  CAS  PubMed  Google Scholar 

  • Belyaeva NE, Schmitt F-J, Pachenko VZ, Riznichenko GY, Rubin AB (2015) Modeling of the redox state dynamics of Chlorella pyrenoidosa Chick cells and leaves of spinach and Arabidopsis thaliana from single flash-induced fluorescence quantum yield changes on the 100 ns–10 s time scale. Photosynth Res 125:123–140

    Article  CAS  PubMed  Google Scholar 

  • Blankenship R, McGuire A, Sauer K (1975) Chemically induced dynamic electron polarization in chloroplasts at room temperature: evidence for triplet state participation in photosynthesis. Proc Natl Acad Sci USA 72:4943–4947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Broser M, Gabdulkhakov A, Kern J, Guskov A, Müh F, Saenger W, Zouni A (2010) Crystal structure of monomeric photosystem II from Thermosynechococcus elongatus at 3.6-Å resolution. J Biol Chem 285:26255–26262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carbonera D, Agostini G, Morosinotto T, Bassi R (2005) Quenching of chlorophyll triplet states by carotenes in reconstituted Lhca4 subunit of peripheral light-harvesting complex of photosystem I. Biochemistry 44:8337–8346

    Article  CAS  PubMed  Google Scholar 

  • Cazzaniga S, Li Z, Niyogi KK, Bassi R, Dall’Osto L (2012) The Arabidopsis szl1 mutant reveals a critical role of β-carotene in photosystem I photoprotection. Plant Physiol 159:1745–1758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Croce R, Mozzo M, Morosinotto T, Romeo A, Hienerwadel R, Bassi R (2007) Singlet and triplet state transitions of carotenoids in antenna complexes of higher-plant photosystem I. Biochemistry 46:3846–3855

    Article  CAS  PubMed  Google Scholar 

  • Demmig-Adams B, Stewart JJ, Adams WW III (2014) Chloroplast photoprotection and the trade-off between abiotic and biotic defense. In: Demmig-Adams B, Garab G, Adams W, Govindjee (eds) Non-photochemical quenching and energy dissipation in plants, algae and cyanobacteria. Advances in photosynthesis and respiration, vol 40. Springer, Dordrecht, pp 632–643

    Google Scholar 

  • Di Mascio P, Kaiser S, Sies H (1989) Lycopene as the most efficient biological carotenoid singlet oxygen quencher. Arch Biochem Biophys 274:532–538

    Article  PubMed  Google Scholar 

  • Dominy P, Williams WP (1987) The role of respiratory electron flow in the control of excitation energy distribution in blue-green algae. Biochim Biophys Acta 982:264–274

    Article  Google Scholar 

  • Domonkos I, Kis M, Gombos Z, Ughy B (2013) Carotenoids, versatile components of oxygenic photosynthesis. Prog Lipid Res 52:539–561

    Article  CAS  PubMed  Google Scholar 

  • Edelman M, Mattoo AK (2008) D1-protein dynamics in photosystem II: the lingering enigma. Photosynth Res 98:609–620

    Article  CAS  PubMed  Google Scholar 

  • Edge R, Truscott DG (1999) Carotenoid radicals and the interaction of carotenoids with active oxygen species. In: Frank HA, Young AJ, Britton G, Cogdell RJ (eds) The photochemistry of carotenoids. Advances in photosynthesis and respiration, vol 8. Springer, Dordrecht, pp 223–244

    Chapter  Google Scholar 

  • Edge R, Land EJ, McGarvey DJ, Burke M, Truscott TG (2000) The reduction potential of the β-carotene•+/β-carotene couple in an aqueous micro-heterogeneous environment. FEBS Lett 471:125–127

    Article  CAS  PubMed  Google Scholar 

  • Flors C, Fryer MJ, Waring J, Reeder B, Bechtold U, Mullinaux PM, Nonell S, Wilson MT, Baker NR (2006) Imaging the production of singlet oxygen in vivo using a new fluorescent sensor, Singlet Oxygen Sensor Green. J Exp Bot 57:1725–1734

    Article  CAS  PubMed  Google Scholar 

  • Frank HA, McLean MB, Sauer K (1979) Triplet states in photosystem I of spinach chloroplasts and subchloroplast particles. Proc Natl Acad Sci USA 76:5124–5128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fryer MJ, Oxborough K, Mullineaux PM, Baker NR (2002) Imaging of photo-oxidative stress responses in leaves. J Exp Bot 53:1249–1254

    Article  CAS  PubMed  Google Scholar 

  • Govindjee (1995) Sixty-three years since Kautsky: chlorophyll a fluorescence. Aust J Plant Physiol (Funct Plant Biol) 22:131–160

    Article  CAS  Google Scholar 

  • Hanley J, Deligiannakis Y, Pascal A, Faller P, Rutherford AW (1999) Carotenoid oxidation in photosystem II. Biochemistry 38:8189–8195

    Article  CAS  PubMed  Google Scholar 

  • Hideg E, Vass I (1995) Singlet oxygen is not produced in photosystem I under photoinhibitory conditions. Photochem Photobiol 62:949–952

    Article  CAS  Google Scholar 

  • Hideg E, Barta C, Kalai T, Vass I, Hideg K, Asada K (2002) Detection of singlet oxygen and superoxide with fluorescent sensors in leaves under stress by photoinhibition or UV radiation. Plant Cell Physiol 43:1154–1164

    Article  CAS  PubMed  Google Scholar 

  • Ishikita H, Knapp E-W (2005) Redox potentials of chlorophylls and β-carotene in the antenna complexes of photosystem II. J Am Chem Soc 127:1963–1968

    Article  CAS  PubMed  Google Scholar 

  • Keren N, Berg A, van Kan PJM, Levanon H, Ohad I (1997) Mechanism of photosystem II photo-inactivation and D1 protein degradation at low light: the role of back electron flow. Proc Natl Acad Sci USA 19:1579–1584

    Article  Google Scholar 

  • Knox JP, Dodge AD (1985) Singlet oxygen and plants. Phytochemistry 24:889–896

    Article  CAS  Google Scholar 

  • Kreslavski VD, Zorina AA, Los DA, Fomina IR, Allakhverdiev SI (2013) Molecular mechanisms of stress resistance of photosynthetic machinery. In: Rout GR, Das AB (eds) Molecular stress physiology of plants, chap 2. Springer, New Delhi, pp 21–51

  • Krieger-Liszkay A, Fufezan C, Trebst A (2008) Singlet oxygen production in photosystem II and related protection mechanism. Photosynth Res 98:551–564

    Article  CAS  PubMed  Google Scholar 

  • Lazar D, Jablonsky J (2009) On the approaches in the formulation of a kinetic model of photosystem II. Different approaches lead to different simulations of the chlorophyll a fluorescence transients. J Theor Biol 257:260–269

    Article  CAS  PubMed  Google Scholar 

  • Mamedov M, Govindjee, Nadtochenko V, Semenov A (2015) Primary electron transfer processes in photosynthetic reaction centers from oxygenic organisms. Photosynth Res 125:51–63

    Article  CAS  PubMed  Google Scholar 

  • Murata N, Allakhverdiev SI, Nishiyama Y (2012) The mechanism of photoinhibition in vivo: re-evaluation of the roles of catalase, α-tocopherol, non-photochemical quenching, and electron transport. Biochim Biophys Acta 1817:1127–1133

    Article  CAS  PubMed  Google Scholar 

  • Nishiyama Y, Allakhverdiev SI, Yamamoto H, Hayashi H, Murata N (2004) Singlet oxygen inhibits the repair of photosystem II by suppressing the translation elongation of the D1 protein in Synechocystis sp. PCC 6803. Biochemistry 43:11321–11330

    Article  CAS  PubMed  Google Scholar 

  • Ostrumov EE, Scholes GD, Govindjee (2014) Photophysics of photosynthetic pigment–protein complexes. In: Demmig-Adams B, Garab G, Adams W, Govindjee (eds) Non-photochemical quenching and energy dissipation in plants, algae and cyanobacteria. Advances in photosynthesis and respiration, vol 40. Springer, Dordrecht, pp 97–128

    Google Scholar 

  • Papageorgiou GC (2012) Fluorescence emission from the photosynthetic apparatus. In: Eaton-Rye JJ, Tripathy BC, Sharkey TD (eds) Photosynthesis: plastid biology, energy conversion and carbon assimilation. Advances in photosynthesis and respiration, vol 34. Springer, Dordrecht, pp 415–443

    Chapter  Google Scholar 

  • Papageorgiou GC, Govindjee (2014) The non-photochemical quenching of the electronically excited state of chlorophyll a in plants: definitions, timelines, viewpoints, open questions. In: Demmig-Adams B, Garab G, Adams WW Jr, Govindjee (eds) Non-photochemical quenching and energy dissipation in plants, algae and cyanobacteria. Advances in photosynthesis and respiration, vol 40. Springer, Dordrecht, pp 1–44

    Google Scholar 

  • Papageorgiou G, Isaakidou J, Argoudelis C (1972) Structure-dependent control of chlorophyll a excitation density: the role of oxygen. FEBS Lett 25:139–142

    Article  CAS  PubMed  Google Scholar 

  • Papageorgiou GC, Tsimilli-Michael M, Stamatakis K (2007) The fast and slow kinetics of chlorophyll a fluorescence induction in plants, algae and cyanobacteria: a viewpoint. Photosynth Res 94:275–290

    Article  CAS  PubMed  Google Scholar 

  • Pospišil P, Prasad A (2014) Formation of singlet oxygen and protection against its oxidative damage in photosystem II under abiotic stress. J Photochem Photobiol B 137:39–48

    Article  PubMed  Google Scholar 

  • Ramel F, Mialoundama AS, Havaux M (2013) Nonenzymic carotenoid oxidation and photooxidative stress signaling in plants. J Exp Bot 64:799–805

    Article  CAS  PubMed  Google Scholar 

  • Rehman AU, Cser K, Sass L, Vass I (2013) Characterization of singlet oxygen production and its involvement in photodamage of photosystem II in the cyanobacterium Synechocystis PCC 6803 by histidine-mediated chemical trapping. Biochim Biophys Acta 1827:689–698

    Article  CAS  PubMed  Google Scholar 

  • Rippka R, Deruelles J, Waterbury JB, Herdman M, Stanier RT (1979) Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111:1–61

    Google Scholar 

  • Schansker G, Tóth SZ, Holzwarth AR, Garab G (2014) Chlorophyll a fluorescence: beyond the limits of the Q(A) model. Photosynth Res 120:43–58

    Article  CAS  PubMed  Google Scholar 

  • Schlodder E, Cetin M, Byrdin M, Terekhova I, Karapetyan NV (2005) P700+-and 3P700-induced quenching of the fluorescence at 760 nm in trimeric photosystem I complexes from the cyanobacterium Arthrospira platensis. Biochim Biophys Acta 1706:53–67

    Article  CAS  PubMed  Google Scholar 

  • Schlodder E, Shubin VV, El-MohsnawyE Roegner M, Karapetyan NV (2007) Steady-state and transient polarized absorption spectroscopy of photosystem I complexes from the cyanobacteria Arthrospira platensis and Thermosynechococcus elongatus. Biochim Biophys Acta 1767:732–741

    Article  CAS  PubMed  Google Scholar 

  • Shuvalov VA (1976) The study of the primary photoprocesses in photosystem I of chloroplasts. Recombination luminescence, Chl triplet state and triplet-triplet annihilation. Biochim Biophys Acta 430:113–121

    Article  CAS  PubMed  Google Scholar 

  • Sinha RK, Komenda J, Knoppova J, Sedlanova M, Pospisil P (2011) Small CAB-like proteins prevent formation of singlet oxygen in the damaged photosystem II complex of the cyanobacterium Synechocystis sp. PCC 6803. J Exp Bot 35:806–818

    Google Scholar 

  • Stamatakis K, Tsimilli-Michael M, Papageorgiou GC (2014) On the question of the light-harvesting role of β-carotene in photosystem II and photosystem I core complexes. Plant Physiol Biochem 81:121–127

    Article  CAS  PubMed  Google Scholar 

  • Stirbet A, Govindjee (2011) On the relation between the Kautsky effect (chlorophyll a fluorescence induction) and photosystem II: basics and applications of the OJIP fluorescence transient. J Photochem Photobiol B: Biol 104:236–257

    Article  CAS  Google Scholar 

  • Strasser RJ, Srivastava A, Tsimilli-Michael M (2004) The fluorescence transient as a tool to characterize and screen photosynthetic samples. In: Papageorgiou GC, Govindjee (eds) Chlorophyll a fluorescence: a signature of photosynthesis, vol 19., Advances in photosynthesis and respirationSpringer, Dordrecht, pp 321–362

    Chapter  Google Scholar 

  • Telfer A (2014) Singlet oxygen production by photosystem II under light stress: mechanism, detection and the protective role of β-carotene. Plant Cell Physiol 55:1216–1223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Telfer A, Bishop SM, Phillips D, Barber J (1994) Isolated photosynthetic reaction center of photosystem II as a sensitizer for the formation of singlet oxygen. Detection and quantum yield determination using a chemical trapping technique. J Biol Chem 269:13244–13253

    CAS  PubMed  Google Scholar 

  • Triantaphyllidès C, Havaux M (2009) Singlet oxygen in plants: production, detoxification and signaling. Trends Plant Sci 14:219–228

    Article  Google Scholar 

  • Tsimilli-Michael M, Stamatakis K, Papageorgiou GC (2009) Dark-to-light transition in Synechococcus sp. PCC 7942 cells studied by fluorescence kinetics assesses plastoquinone redox poise in the dark and photosystem II fluorescence component and dynamics during state 2 to state 1 transition. Photosynth Res 99:243–255

    Article  CAS  PubMed  Google Scholar 

  • Tyystjaervi E (2013) Photoinhibition of photosystem II. Int Rev Cell Mol Biol 300:243–303

    Article  Google Scholar 

  • Van Mieghem FJE, Nitschke W, Mathis P, Rutherford AW (1989) The influence of the quinone–iron electron acceptor complex on the reaction centre photochemistry of photosystem II. Biochim Biophys Acta 977:207–214

    Article  Google Scholar 

  • Vass I (2012) Molecular mechanisms of photodamage in the photosystem II complex. Biochim Biophys Acta 1817:209–217

    Article  CAS  PubMed  Google Scholar 

  • Vass I, Styring S, Hundal T, Koivuniemi A, Aro EM, Andersson B (1992) Reversible and irreversible intermediates during photoinhibition of photosystem II: stable reduced Q A species promote chlorophyll triplet formation. Proc Natl Acad Sci USA 89:1408–1412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Velthuys BR (1981) Electron-dependent competition between plastoquinone and inhibitors for binding to photosystem II. FEBS Lett 126:277–281

    Article  CAS  Google Scholar 

  • Vredenberg W (2015) A simple routine for the quantitative analysis of light and dark kinetics of photochemical and non-photochemical quenching of chlorophyll fluorescence in intact leaves. Photosynth Res 124:87–106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vrettos JS, Stewart DH, de Paula JC, Brudwig GW (1999) Low temperature optical and resonance Raman spectra of a carotenoid cation radical in Photosystem II. J Phys Chem B 103:6403–6406

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Govindjee thanks for a visiting professorship at the School of Life Sciences, Jawaharlal Nehru University, New Delhi, during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George C. Papageorgiou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stamatakis, K., Papageorgiou, G.C. & Govindjee Effects of exogenous β-carotene, a chemical scavenger of singlet oxygen, on the millisecond rise of chlorophyll a fluorescence of cyanobacterium Synechococcus sp. PCC 7942. Photosynth Res 130, 317–324 (2016). https://doi.org/10.1007/s11120-016-0255-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-016-0255-9

Keywords

Navigation