Skip to main content

Advertisement

Log in

Nano-sized Mn oxide/agglomerated silsesquioxane composite as a good catalyst for water oxidation

  • Original Article
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Water splitting to hydrogen and oxygen is an important reaction to store sustainable energies, and water oxidation is identified as the bottleneck for water splitting because it requires the high activation energy to perform. Herein a nano-sized Mn oxide/agglomerated silsesquioxane composite was used to synthesize an efficient catalyst for water oxidation. The composite was synthesized by a straightforward and simple procedure and characterized by scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, Raman spectroscopy, dynamic light scattering, X-ray diffraction spectrometry, and electrochemical methods. Silsesquioxane causes good dispersion of Mn in the composite. The water-oxidizing activity of this composite was studied in the presence of cerium(IV) ammonium nitrate. The composite at the best calcination temperature (300 °C) shows a turnover frequency 0.3 (mmol O2/mol Mn.s). Regarding the low-cost, environmentally friendly precursors, simple synthesis, and efficiency for water oxidation, the composite is a promising catalyst that can be used in artificial photosynthetic systems for water splitting.

Graphical Abstract

We used Agglomerated silsesquioxane as a support for nano-sized Mn oxide to synthesize a good water-oxidizing catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Balzani V, Credi A, Venturi M (2008) Photochemical conversion of solar energy. ChemSusChem 1:26–58

    Article  CAS  PubMed  Google Scholar 

  • Baney RH, Itoh M, Sakakibara A, Suzuki T (1995) Silsesquioxanes. Chem Rev 95:1409–1430

    Article  CAS  Google Scholar 

  • Birkner N, Nayeri S, Pashaei B, Najafpour MM, Casey WH, Navrotsky A (2010) Energetic basis of catalytic activity of layered nanophase calcium manganese oxides for water oxidation. PNAS 110:8801–8806

    Article  Google Scholar 

  • Blakemore JD, Crabtree RH, Brudvig GW (2015) Molecular catalysts for water oxidation. Chem Rev 115(23):12974–13005

    Article  CAS  PubMed  Google Scholar 

  • Bockris OM (1977) Energy—the solar hydrogen alternative. Wiley New York

  • Bonke SA, Wiechen M, MacFarlane DR, Spiccia L (2015) Renewable fuels from concentrated solar power: towards practical artificial photosynthesis. Energy Environ Sci 8:2791–2796

    Article  CAS  Google Scholar 

  • Cady CW, Crabtree RH, Brudvig GW (2008) Functional models for the oxygen-evolving complex of Photosystem II. Coord Chem Rev 252:444–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cordes DB, Lickiss PD, Rataboul F (2010) Recent developments in the chemistry of cubic polyhedral oligosilsesquioxanes. Chem Rev 110:2081–2173

    Article  CAS  PubMed  Google Scholar 

  • Cox N, Pantazis DA, Neese F, Lubitz W (2015) Artificial photosynthesis: understanding water splitting in nature. Inter Focus 5(3):20150009

    Article  Google Scholar 

  • Emsley J (2001) Manganese. Nature’s building blocks: an a–z guide to the elements. Oxford University Press, Oxford, pp 249–253. ISBN 0-19-850340-7

    Google Scholar 

  • Faunce T, Styring S, Wasielewski MR, Brudvig GW, Rutherford AW, Messinger J, Lee AF, Hill CL, de Groot H, Fontecave M, MacFarlane DR, Hankamer B, Nocera GG, Tiede DM, Dau H, Hillier W, Wang L (2013) Artificial photosynthesis as a frontier technology for energy sustainability. Energy Environ Sci 6:1074–1076

    Article  Google Scholar 

  • Ferreira KN, Iverson TM, Maghlaoui K, Barber J, Iwata S (2004) Architecture of the photosynthetic oxygen evolving centre. Science 303:1831–1838

    Article  CAS  PubMed  Google Scholar 

  • Glikman TS, Shchegoleva IS (1968) The catalytic oxidation of water by quadrivalent cerium ions. Kinet Katal 1968:461–462

    Google Scholar 

  • Gust D, Moore TA, Moore AL (2012) Realizing artificial photosynthesis. J Chem Soc Faraday Trans I 155:9–26

    CAS  Google Scholar 

  • Harriman A, Pickering IJ, Thomas JM, Christensen PA (1988) Metal oxides as heterogeneous catalysts for oxygen evolution under photochemical conditions. J Chem Soc Faraday Trans I 84:2795–2806

    Article  CAS  Google Scholar 

  • Hocking RK, Brimblecomble R, Chang SLY, Singh A, Cheah MH, Glover C, Casey WH, Spiccia WL (2011) Water oxidation catalysis by manganese in a geochemical-like cycle. Nat Chem 3:461–466

    CAS  PubMed  Google Scholar 

  • Hou HJ (2010) Structural and mechanistic aspects of manganese-oxo compounds in water oxidation catalysis and potential. App J Integr Plant Biol 5:704–711

    Article  Google Scholar 

  • House RL, Iha NYM, Coppo RL, Alibabaei L, Sherman BD, Kang P, Brennaman MK, Hoertz PG, Meyer TG (2015) Artificial photosynthesis: where are we now? Where can we go. J Photochem Photobiol C 25:32–45

    Article  CAS  Google Scholar 

  • Huynh M, Bediako DK, Nocera DG (2014) A functionally stable manganese oxide oxygen evolution catalyst in acid. J Am Chem Soc 136:6002–6010

    Article  CAS  PubMed  Google Scholar 

  • Jiao F, Frei H (2010) Nanostructured manganese oxide clusters supported on mesoporous silica as efficient oxygen-evolving catalysts. Chem Commun 46:2920–2922

    Article  CAS  Google Scholar 

  • Kanan WMW, Nocera DG (2008) In situ formation of an oxygen evolving catalyst in neutral water containing phosphate and Co2+. Science 32:1072–1075

    Article  Google Scholar 

  • Karlsson EA, Lee B, Åkermark T, Johnston TEV, Kärkäs MD, Sun J, Hansson Ö, Bäckvall J, Åkermark B (2011) Photosensitized water oxidation by use of a bioinspired manganese catalyst. Angew Chem Int Ed 123:11919–11922

    Article  Google Scholar 

  • Liu X, Wang F (2012) Transition metal complexes that catalyze oxygen formation from water: 1979–2010. Coord Chem Rev 256:1115–1136

    Article  CAS  Google Scholar 

  • Morita M, Iwakura C, Tamura H (1977) The anodic characteristics of manganese dioxide electrodes prepared by thermal decomposition of manganese nitrate. Electrochim Acta 22:325–328

    Article  CAS  Google Scholar 

  • Najafpour MM (2013) An approach for catalyst design in artificial photosynthetic systems: focus on nano-sized inorganic cores within proteins. Photosynth Res 117:197–205

    Article  CAS  PubMed  Google Scholar 

  • Najafpour MM, Amini E (2015) Nano-sized Mn oxide on halloysite or high surface area montmorillonite as an efficient catalyst for water oxidation with cerium (IV) ammonium nitrate: supports from natural sources. Dalton Trans 44:15441–15449

    Article  CAS  PubMed  Google Scholar 

  • Najafpour MM, Jafarian Sedigh D (2013) Water oxidation by manganese oxides, a new step towards a complete picture: simplicity is the ultimate sophistication. Dalton Trans 42:12173–12178

    Article  CAS  PubMed  Google Scholar 

  • Najafpour MM, Nemati Moghaddam A (2012) Amorphous manganese oxide-coated montmorillonite as an efficient catalyst for water oxidation. New J Chem 36:2514–2519

    Article  CAS  Google Scholar 

  • Najafpour MM, Ehrenberg T, Wiechen M, Kurz P (2010) Calcium manganese(III) oxides (CaMn2O4.xH2O) as biomimetic oxygen-evolving catalysts. Angew Chem Int Edit 49:2233–2237

    Article  CAS  Google Scholar 

  • Najafpour MM, Haghighi B, Jafarian Sedigh D, Zarei Ghobadi M (2013a) Conversions of Mn oxides to nanolayered Mn oxide in electrochemical water oxidation at near neutral pH, all to a better catalyst: catalyst evolution. Dalton Trans 42:16683–16686

    Article  CAS  PubMed  Google Scholar 

  • Najafpour MM, Nemati Moghaddam A, Sakha Y (2013b) A simple mathematical model for manganese oxide-coated montmorillonite as a catalyst for water oxidation: from nano to macro sized manganese oxide. Dalton Trans 42:11012–11020

    Article  CAS  PubMed  Google Scholar 

  • Najafpour MM, Jafarian Sedigh D, Pashaei B, Nayeri S (2013c) Water oxidation by nano-layered manganese oxides in the presence of cerium (IV) ammonium nitrate: important factors and a proposed self-repair mechanism. New J Chem 37:2448–2459

    Article  CAS  Google Scholar 

  • Najafpour MM, Haghighi B, Zarei Ghobadia M, Jafarian Sedigh D (2013d) Nanolayered manganese oxide/poly(4-vinylpyridine) as a biomimetic and very efficient water oxidizing catalyst: toward an artificial enzyme in artificial photosynthesis. Chem Commun 49:8824–8826

    Article  CAS  Google Scholar 

  • Najafpour MM, Rahimi F, Fathollahzadeh M, Haghighi B, Holynska B, Tomo T, Allakhverdiev SI (2014) Nanostructured manganese oxide/carbon nanotubes, graphene and graphene oxide as water-oxidizing composites in artificial photosynthesis. Dalton Trans 43:10866–10876

    Article  CAS  PubMed  Google Scholar 

  • Najafpour MM, Hołyńska M, Salimi S (2015a) Applications of the “nano to bulk” Mn oxides: mn oxide as a Swiss army knife. Coord Chem Rev 285:65–75

    Article  CAS  Google Scholar 

  • Najafpour MM, Khoshkam M, Jafarian Sedigh D, Zahraei A, Kompany-Zareh M (2015b) Self-healing for nanolayered manganese oxides in the presence of cerium (IV) ammonium nitrate: new findings. New J Chem 39:2547–2550

    Article  CAS  Google Scholar 

  • Najafpour MM, Renger G, Hołyńska M, Nemati Moghaddam A, Aro EM, Carpentier R, H Nishihara, Eaton-Rye JJ, Shen JR, Allakhverdiev SI (2016a) Manganese compounds as water-oxidizing catalysts: from the natural water-oxidizing complex to nanosized manganese oxide structures. Chem Rev. doi:10.1021/acs.chemrev.5b00340

  • Najafpour MM, Salimi S, Balaghi SE, Hołyńska M, Tomo T, Hossaini Sadr M, Soltani B, Sheng J-R, Vezirogluh TN, Allakhverdiev SI (2016b) Nanostructured manganese oxide on frozen smoke: a new water-oxidizing composite. Int J Hydrogen Energy. 41:2466–2476

    Article  CAS  Google Scholar 

  • Nakamoto K (2009) In infrared and Raman spectra of inorganic and coordination compounds, Wiley

  • Nath K, Najafpour MM, Voloshin RA, Balaghi SE, Tyystjärvi E, Timilsina R, Eaton-Rye JJ, Tomo T, Nam HG, Nishihara H, Ramakrishna S, Allakhverdiev SI (2015) Photobiological hydrogen production and artificial photosynthesis for clean energy: from bio to nanotechnologies. Photosyn Res 126:237–247

    Article  CAS  PubMed  Google Scholar 

  • Post JE (1999) Manganese oxide minerals: crystal structures and economic and environmental significance. PNAS 96(7):3447–3454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robinson DM, Go YB, Mui M, Gardner G, Zhang Z, Mastrogiovanni D, Garfunkel E, Li J, Greenblatt M, Dismukes GC (2013) Photochemical water oxidation by crystalline polymorphs of manganese oxides: structural requirements for catalysis. J Am Chem Soc 135(9):3494–3501

    Article  CAS  PubMed  Google Scholar 

  • Umena Y, Kawakami K, Shen JR, Kamiya N (2011) Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å. Nature 473:55–60

    Article  CAS  PubMed  Google Scholar 

  • Wiechen M, Najafpour MM, Allakhverdiev SI, Spiccia L (2014) Water oxidation catalysis by manganese oxides: learning from evolution. Energy Environ Sci 7:2203–2212

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Institute for Advanced Studies in Basic Sciences and the National Elite Foundation for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Mahdi Najafpour.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1753 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Najafpour, M.M., Madadkhani, S. Nano-sized Mn oxide/agglomerated silsesquioxane composite as a good catalyst for water oxidation. Photosynth Res 130, 73–81 (2016). https://doi.org/10.1007/s11120-016-0225-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-016-0225-2

Keywords

Navigation