Skip to main content
Log in

Supramolecular organization of photosynthetic complexes in membranes of Roseiflexus castenholzii

  • Original Article
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

The photosynthetic membranes of the filamentous anoxygenic phototroph Roseiflexus castenholzii have been studied with electron microscopy, atomic force microscopy, and biochemistry. Electron microscopy of the light-harvesting reaction center complex produced a 3D model that aligns with the solved crystal structure of the RC–LH1 from Thermochromatium tepidum with the H subunit removed. Atomic force microscopy of the whole membranes yielded a picture of the supramolecular organization of the major proteins in the photosynthetic electron transport chain. The results point to a loosely packed membrane without accessory antenna proteins or higher order structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ACIII:

Alternative complex III

AFM:

Atomic force microscopy

Bchl:

Bacteriochlorophyll

Bphe:

Bacteriopheophytin

EM:

Electron microscopy

FAP:

Filamentous anoxygenic phototrophs

GSB:

Green sulfur bacteria

RC–LH:

Light-harvesting reaction center complex in Roseiflexus castenholzii

RC–LH1:

Light-harvesting reaction center 1 complex in purple bacteria

References

  • Adams PG, Hunter CN (2012) Adaptation of intracytoplasmic membranes to altered light intensity in Rhodobacter sphaeroides. Biochim Biophys Acta 1817:1616–1627

    Article  CAS  PubMed  Google Scholar 

  • Allen JP, Feher G, Yeates TO et al (1987) Structure of the reaction center from Rhodobacter sphaeroides R-26: the protein subunits. Proc Natl Acad Sci USA 84:6162–6166

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bahatyrova S, Frese RNR, Siebert CA et al (2004) The native architecture of a photosynthetic membrane. Nature 430:1058–1062

    Article  CAS  PubMed  Google Scholar 

  • Bína D, Gardian Z, Vácha F, Litvín R (2014) Supramolecular organization of photosynthetic membrane proteins in the chlorosome-containing bacterium Chloroflexus aurantiacus. Photosynth Res 122:13–21

    Article  PubMed  Google Scholar 

  • Blankenship RE (2010) Early evolution of photosynthesis. Plant Physiol 154:434–438

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Boonstra AF, Visschers RW, Calkoen F et al (1993) Structural characterization of the B800–850 and B875 light-harvesting antenna complexes from Rhodobacter sphaeroides by electron microscopy. Biochim Biophys Acta 1142:181–188

    Article  CAS  Google Scholar 

  • Boonstra AF, Germeroth L, Boekema EJ (1994) Structure of the light harvesting antenna from Rhodospirillum molischianum studied by electron microscopy. Biochim Biophys Acta 1184:227–234

    Article  CAS  Google Scholar 

  • Broglie RM, Hunter CN, Delepelaire P et al (1980) Isolation and characterization of the pigment-protein complexes of Rhodopseudomonas sphaeroides by lithium dodecyl sulfate/polyacrylamide gel electrophoresis. Proc Natl Acad Sci USA 77:87–91

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cao L, Bryant DA, Schepmoes AA et al (2012) Comparison of Chloroflexus aurantiacus strain J-10-fl proteomes of cells grown chemoheterotrophically and photoheterotrophically. Photosynth Res 110:153–168

    Article  CAS  PubMed  Google Scholar 

  • Cartron ML, Olsen JD, Sener M et al (2014) Integration of energy and electron transfer processes in the photosynthetic membrane of Rhodobacter sphaeroides. Biochim Biophys Acta 1837:1369–1380

    Google Scholar 

  • Cogdell R, van Grondelle R (2003) The light-harvesting system of purple bacteria. In: Green BR, Parson WW (eds) Light-harvesting antennas in photosynthesis. Advances in Photosynthesis, vol 13. Kluwer Academic Publishers, Dordrecht, pp 169–194

    Chapter  Google Scholar 

  • Collins AM, Xin Y, Blankenship RE (2009) Pigment organization in the photosynthetic apparatus of Roseiflexus castenholzii. Biochim Biophys Acta 1787:1050–1056

    Article  CAS  PubMed  Google Scholar 

  • Collins A, Qian P, Tang Q, Bocian D (2010) Light-harvesting antenna system from the phototrophic bacterium Roseiflexus castenholzii. Biochemistry 49:7524–7531

    Article  CAS  PubMed  Google Scholar 

  • Collins A, Kirmaier C, Holten D, Blankenship RE (2011) Kinetics and energetics of electron transfer in reaction centers of the photosynthetic bacterium Roseiflexus castenholzii. Biochim Biophys Acta 1807:262–269

    Article  CAS  PubMed  Google Scholar 

  • Comayras F, Jungas C, Lavergne J (2005) Functional consequences of the organization of the photosynthetic apparatus in Rhodobacter sphaeroides. I. Quinone domains and excitation transfer in chromatophores and reaction center.antenna complexes. J Biol Chem 280:11203–11213

    Article  CAS  PubMed  Google Scholar 

  • Crouch L, Jones M (2012) Cross-species investigation of the functions of the Rhodobacter PufX polypeptide and the composition of the RC–LH1 core complex. Biochim Biophys Acta 2:336–352

    Article  Google Scholar 

  • Deisenhofer J, Epp O, Miki K et al (1985) Structure of the protein subunits in the photosynthetic reaction centre of Rhodopseudomonas viridis at 3 Å resolution. Nature 318:618–624

    Article  CAS  PubMed  Google Scholar 

  • Gao X, Xin Y, Blankenship RE (2009) Enzymatic activity of the alternative complex III as a menaquinol:auracyanin oxidoreductase in the electron transfer chain of Chloroflexus aurantiacus. FEBS Lett 583:3275–3279

    Article  CAS  PubMed  Google Scholar 

  • Gao X, Xin Y, Bell PD et al (2010) Structural analysis of alternative complex III in the photosynthetic electron transfer chain of Chloroflexus aurantiacus. Biochemistry 49:6670–6679

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gao X, Majumder EW, Kang Y et al (2013) Functional analysis and expression of the mono-heme containing cytochrome c subunit of alternative complex III in Chloroflexus aurantiacus. Arch Biochem Biophys 535:197–204

    Article  CAS  PubMed  Google Scholar 

  • Goodhew CF, Brown KR, Pettigrew GW (1986) Haem staining in gels, a useful tool in the study of bacterial c-type cytochromes. Biochim Biophys Acta 852:288–294

    Article  CAS  Google Scholar 

  • Guner S, Willie A, Millett F et al (1993) The interaction between cytochrome c2 and the cytochrome bc1 complex in the photosynthetic purple bacteria Rhodobacter capsulatus and Rhodopseudomonas viridis. Biochemistry 32:4793–4800

    Article  CAS  PubMed  Google Scholar 

  • Hall J, Zha X, Durham B et al (1987) Reaction of cytochrome c and c2 with the Rhodobacter sphaeroides reaction center involves the heme crevice domain. Biochemistry 26:4494–4500

    Article  CAS  PubMed  Google Scholar 

  • Hanada S, Takaichi S, Matsuura K, Nakamura K (2002) Roseiflexus castenholzii gen. nov., sp nov., a thermophilic, filamentous, photosynthetic bacterium that lacks chlorosomes. Int J Syst Evol Microbiol 52:187–193

    Article  CAS  PubMed  Google Scholar 

  • Hohmann-Marriott MF, Blankenship RE (2011) Evolution of photosynthesis. Annu Rev Plant Biol 62:515–548

    Article  CAS  PubMed  Google Scholar 

  • Hu X, Ritz T (2002) Photosynthetic apparatus of purple bacteria. Q Rev Biophys 35:1–62

    Article  CAS  PubMed  Google Scholar 

  • Jormakka M, Yokoyama K, Yano T et al (2008) Molecular mechanism of energy conservation in polysulfide respiration. Nat Struct Mol Biol 15:730–737

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Katona G, Andréasson U, Landau EM et al (2003) Lipidic cubic phase crystal structure of the photosynthetic reaction centre from Rhodobacter sphaeroides at 2.35 Å resolution. J Mol Biol 331:681–692

    Article  CAS  PubMed  Google Scholar 

  • Kirmaier C, Holten D (1987) Primary photochemistry of reaction centers from the photosynthetic purple bacteria. Photosynth Res 13:225–260

    Article  CAS  PubMed  Google Scholar 

  • Kirmaier C, Holten D, Parson WW (1985) Temperature and detection-wavelength dependence of the picosecond electron-transfer kinetics measured in Rhodopseudomonas sphaeroides reaction centers. Resolution of new spectral and kinetic components in the primary charge-separation process. Biochim Biophys Acta 810:33–48

    Article  CAS  Google Scholar 

  • Liu H, Zhang H, Niedzwiedzki DM et al (2013) Phycobilisomes supply excitations to both photosystems in a megacomplex in cyanobacteria. Science 342:1104–1107

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Majumder ELW, King JD, Blankenship RE (2013) Alternative Complex III from phototrophic bacteria and its electron acceptor auracyanin. Biochim Biophys Acta 11:1383–1391

    Article  Google Scholar 

  • Niedzwiedzki DM, Collins AM, LaFountain AM et al (2010) Spectroscopic studies of carotenoid-to-bacteriochlorophyll energy transfer in RC-LH photosynthetic complex from Roseiflexus castenholzii. J Phys Chem B 114:8723–8734

    Article  CAS  PubMed  Google Scholar 

  • Niwa S, Yu L, Takeda K et al (2014) Structure of the LH1-RC complex from Thermochromatium tepidum at 3.0 Å. Nature 508:228–232

    Article  CAS  PubMed  Google Scholar 

  • Ortega JM, Mathis P (1993) Electron transfer from the tetraheme cytochrome to the special pair in isolated reaction centers of Rhodopseudomonas viridis. Biochemistry 32:1141–1151

    Article  CAS  PubMed  Google Scholar 

  • Pettersen EF, Goddard TD, Huang CC et al (2004) UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612

    Article  CAS  PubMed  Google Scholar 

  • Pierson BK, Castenholz RW (1974) A phototrophic gliding filamentous bacterium of hot springs, Chloroflexus aurantiacus, gen. and sp. nov. Arch Microbiol 100:5–24

    Article  CAS  PubMed  Google Scholar 

  • Pugh R, McGlynn P, Jones M, Hunter C (1998) The LH1–RC core complex of Rhodobacter sphaeroides: interaction between components, time-dependent assembly, and topology of the PufX protein. Biochim Biophys Acta 1366:301–316

    Article  CAS  PubMed  Google Scholar 

  • Pullerits T, Sundström V (1996) Photosynthetic light-harvesting pigment-protein complexes: toward understanding how and why. Acc Chem Res 8:381–389

    Article  Google Scholar 

  • Pullerits T, Visscher KJ, Hess S et al (1994) Energy transfer in the inhomogeneously broadened core antenna of purple bacteria: a simultaneous fit of low-intensity picosecond absorption and fluorescence kinetics. Biophys J 66:236–248

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Qian P, Hunter C, Bullough P (2005) The 8.5 Å projection structure of the core RC–LH1–PufX dimer of Rhodobacter sphaeroides. J Mol Biol 349:948–960

    Article  CAS  PubMed  Google Scholar 

  • Qian P, Bullough P, Hunter C (2008) Three-dimensional reconstruction of a membrane-bending complex the RC-LH1-PufX core dimer of Rhodobacter sphaeroides. J Biol Chem 283:14002–14011

    Article  CAS  PubMed  Google Scholar 

  • Qian P, Papiz MZ, Jackson PJ et al (2013) Three-dimensional structure of the Rhodobacter sphaeroides RC-LH1-PufX complex: dimerization and quinone channels promoted by PufX. Biochemistry 43:7575–7585

    Article  Google Scholar 

  • Roszak AW, Howard TD, Southall J et al (2003) Crystal structure of the RC-LH1 core complex from Rhodopseudomonas palustris. Science 302:1969–1972

    Article  CAS  PubMed  Google Scholar 

  • Scheuring S, Sturgis JN (2009) Atomic force microscopy of the bacterial photosynthetic apparatus: plain pictures of an elaborate machinery. Photosynth Res 102:197–211

    Article  CAS  PubMed  Google Scholar 

  • Scheuring S, Lévy D, Rigaud J-L (2005) Watching the components of photosynthetic bacterial membranes and their in situ organisation by atomic force microscopy. Biochim Biophys Acta 1712:109–127

    Article  CAS  PubMed  Google Scholar 

  • Scheuring S, Boudier T, Sturgis J (2007) From high-resolution AFM topographs to atomic models of supramolecular assemblies. J Struct Biol 159:268–276

    Article  CAS  PubMed  Google Scholar 

  • Sener MK, Olsen JD, Hunter CN, Schulten K (2007) Atomic-level structural and functional model of a bacterial photosynthetic membrane vesicle. Proc Natl Acad Sci USA 104:15723–15728

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sturgis JNJ, Niederman RRA (2008) Atomic force microscopy reveals multiple patterns of antenna organization in purple bacteria: implications for energy transduction mechanisms and membrane modeling. Photosynth Res 95:269–278

    Article  CAS  PubMed  Google Scholar 

  • Sturgis JN, Tucker JD, Olsen JD et al (2009) Atomic force microscopy studies of native photosynthetic membranes. Biochemistry 48:3679–3698

    Article  CAS  PubMed  Google Scholar 

  • Sundström V, van Grondelle R (1995) Kinetics of excitation transfer and trapping in purple bacteria. Anoxyg Photosynth Bact 2:349–372

    Article  Google Scholar 

  • Takaichi S, Maoka T, Yamada M et al (2001) Absence of carotenes and presence of a tertiary methoxy group in a carotenoid from a thermophilic filamentous photosynthetic bacterium Roseiflexus castenholzii. Plant Cell Physiol 42:1355–1362

    Article  CAS  PubMed  Google Scholar 

  • Tang G, Peng L, Baldwin PR et al (2007) EMAN2: an extensible image processing suite for electron microscopy. J Struct Biol 157:38–46

    Article  CAS  PubMed  Google Scholar 

  • Tang K-H, Barry K, Chertkov O et al (2011) Complete genome sequence of the filamentous anoxygenic phototrophic bacterium Chloroflexus aurantiacus. BMC Genomics 12:334

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Timmins PA, Leonhard M, Weltzien HU et al (1988) A physical characterization of some detergents of potential use for membrane protein crystallization. FEBS Lett 238:361–368

    Article  CAS  Google Scholar 

  • Tsukatani Y, Nakayama N, Shimada K et al (2009) Characterization of a blue-copper protein, auracyanin, of the filamentous anoxygenic phototrophic bacterium Roseiflexus castenholzii. Arch Biochem Biophys 490:57–62

    Article  CAS  PubMed  Google Scholar 

  • Tucker JD, Siebert CA, Escalante M et al (2010) Membrane invagination in Rhodobacter sphaeroides is initiated at curved regions of the cytoplasmic membrane, then forms both budded and fully detached spherical vesicles. Mol Microbiol 76:833–847

    Article  CAS  PubMed  Google Scholar 

  • Van der Meer MTJ, Klatt CG, Wood J et al (2010) Cultivation and genomic, nutritional, and lipid biomarker characterization of Roseiflexus strains closely related to predominant in situ populations inhabiting Yellowstone hot spring microbial mats. J Bacteriol 192:3033–3042

    Article  PubMed Central  PubMed  Google Scholar 

  • Van ver Meer MTJ, Schouten S, Hanada S et al (2002) Alkane-1,2-diol-based glycosides and fatty glycosides and wax esters in Roseiflexus castenholzii and hot spring microbial mats. Arch Microbiol 178:229–237

    Article  Google Scholar 

  • Visscher KJ, Bergström H, Sundström V et al (1989) Temperature dependence of energy transfer from the long wavelength antenna BChl-896 to the reaction center in Rhodospirillum rubrum, Rhodobacter sphaeroides (w.t. and M21 mutant) from 77 to 177 K, studied by picosecond absorption spectroscopy. Photosynth Res 22:211–217

    Article  CAS  PubMed  Google Scholar 

  • Xin Y, Pan J, Collins A et al (2012) Excitation energy transfer and trapping dynamics in the core complex of the filamentous photosynthetic bacterium Roseiflexus castenholzii. Photosynth Res 111:149–156

    Article  CAS  PubMed  Google Scholar 

  • Yamada M, Zhang H, Hanada S et al (2005) Structural and spectroscopic properties of a reaction center complex from the chlorosome-lacking filamentous anoxygenic phototrophic bacterium Roseiflexus castenholzii. J Bacteriol 187:1702–1709

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This material is based upon work supported as part of the Photosynthetic Antenna Research Center (PARC), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC 0001035; EL-WM was supported by an Olin Fellowship for Women and a PEO Scholar Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert E. Blankenship.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 273 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Majumder, E.LW., Olsen, J.D., Qian, P. et al. Supramolecular organization of photosynthetic complexes in membranes of Roseiflexus castenholzii . Photosynth Res 127, 117–130 (2016). https://doi.org/10.1007/s11120-015-0179-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-015-0179-9

Keywords

Navigation