Skip to main content
Log in

Up-converted fluorescence from photosynthetic light-harvesting complexes linearly dependent on excitation intensity

  • Regular Paper
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

An Erratum to this article was published on 02 April 2015

Abstract

Weak up-converted fluorescence related to bacteriochlorophyll a was recorded from various detergent-isolated and membrane-embedded light-harvesting pigment–protein complexes as well as from the functional membranes of photosynthetic purple bacteria under continuous-wave infrared laser excitation at 1064 nm, far outside the optically allowed singlet absorption bands of the chromophore. The fluorescence increases linearly with the excitation power, distinguishing it from the previously observed two-photon excited fluorescence upon femtosecond pulse excitation. Possible mechanisms of this excitation are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alden RG, Johnson E, Nagarajan V et al (1997) Calculations of spectroscopic properties of the LH2 bacteriochlorophyll—protein antenna complex from Rhodopseudomonas acidophila. J Phys Chem B 101:4667–4680. doi:10.1021/jp970005r

    Article  CAS  Google Scholar 

  • Ashikhmin A, Makhneva Z, Moskalenko A (2014) The LH2 complexes are assembled in the cells of purple sulfur bacterium Ectothiorhodospira haloalkaliphila with inhibition of carotenoid biosynthesis. Photosynth Res 119:291–303. doi:10.1007/s11120-013-9947-6

    Article  CAS  PubMed  Google Scholar 

  • Ashkin A (1970) Acceleration and trapping of particles by radiation pressure. Phys Rev Lett 24:156–159. doi:10.1103/PhysRevLett.24.156

    Article  CAS  Google Scholar 

  • Beekman LMP, Frese RN, Fowler GJS et al (1997) Characterization of the light-harvesting antennas of photosynthetic purple bacteria by Stark spectroscopy. 2. LH2 complexes: influence of the protein environment. J Phys Chem B 101:7293–7301. doi:10.1021/jp963447w

    Article  CAS  Google Scholar 

  • Bittl R, Schlodder E, Geisenheimer I et al (2001) Transient EPR and absorption studies of carotenoid triplet formation in purple bacterial antenna complexes. J Phys Chem B 105:5525–5535. doi:10.1021/jp0033014

    Article  CAS  Google Scholar 

  • Bopp MA, Jia Y, Li L et al (1997) Fluorescence and photobleaching dynamics of single light-harvesting complexes. Proc Natl Acad Sci 94:10630–10635. doi:10.1073/pnas.94.20.10630

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Clayton RK, Clayton BJ (1981) B850 pigment-protein complex of Rhodopseudomonas sphaeroides: extinction coefficients, circular dichroism, and the reversible binding of bacteriochlorophyll. Proc Natl Acad Sci 78:5583–5587

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Frank HA, Cogdell RJ (1996) Carotenoids in photosynthesis. Photochem Photobiol 63:257–264. doi:10.1111/j.1751-1097.1996.tb03022.x

    Article  CAS  PubMed  Google Scholar 

  • Freiberg A, Rätsep M, Timpmann K et al (2003) Self-trapped excitons in LH2 antenna complexes between 5 K and ambient temperature. J Phys Chem B 107:11510–11519. doi:10.1021/jp0344848

    Article  CAS  Google Scholar 

  • Freiberg A, Rätsep M, Timpmann K, Trinkunas G (2009) Excitonic polarons in quasi-one-dimensional LH1 and LH2 bacteriochlorophyll a antenna aggregates from photosynthetic bacteria: a wavelength-dependent selective spectroscopy study. Chem Phys 357:102–112. doi:10.1016/j.chemphys.2008.10.043

    Article  CAS  Google Scholar 

  • Freiberg A, Timpmann K, Trinkunas G (2010) Spectral fine-tuning in excitonically coupled cyclic photosynthetic antennas. Chem Phys Lett 500:111–115. doi:10.1016/j.cplett.2010.09.084

    Article  CAS  Google Scholar 

  • Freiberg A, Rätsep M, Timpmann K (2012) A comparative spectroscopic and kinetic study of photoexcitations in detergent-isolated and membrane-embedded LH2 light-harvesting complexes. Biochim Biophys Acta BBA—Bioenerg 1817:1471–1482. doi:10.1016/j.bbabio.2011.11.019

    Article  CAS  Google Scholar 

  • Freiberg A, Pajusalu M, Rätsep M (2013) Excitons in intact cells of photosynthetic bacteria. J Phys Chem B 117:11007–11014. doi:10.1021/jp3098523

    Article  CAS  PubMed  Google Scholar 

  • Hartzler DA, Niedzwiedzki DM, Bryant DA et al (2014) Triplet excited state energies and phosphorescence spectra of (bacterio) chlorophylls. J Phys Chem B 118:7221–7232. doi:10.1021/jp500539w

    Article  CAS  PubMed  Google Scholar 

  • Koyama Y, Kakitani Y, Limantara L, Fujii R (2006) Effects of axial coordination, electronic excitation and oxidation on bond orders in the bacteriochlorin macrocycle, and generation of radical cation on photo-excitation of in vitro and in vivo bacteriochlorophyll a aggregates: resonance Raman studies. In: Grimm B, Porra RJ, Rüdiger W, Scheer H (eds) Chlorophylls Bacteriochlorophylls. Springer, Netherlands, pp 323–335

    Chapter  Google Scholar 

  • Krasnovski AAJ (2014) Phosphorescence of triplet chlorophylls. In: Kadish KM, Smith KM, Guilard R (eds) Handbook of porphyrin science. World Scientific Publishing, Hackensack, pp 77–166

    Google Scholar 

  • Krikunova M, Kummrow A, Voigt B et al (2002) Fluorescence of native and carotenoid-depleted LH2 from Chromatium minutissimum, originating from simultaneous two-photon absorption in the spectral range of the presumed (optically “dark”) S 1 state of carotenoids. FEBS Lett 528:227–229. doi:10.1016/S0014-5793(02)03315-X

    Article  CAS  PubMed  Google Scholar 

  • Krueger BP, Yom J, Walla PJ, Fleming GR (1999) Observation of the S 1 state of spheroidene in LH2 by two-photon fluorescence excitation. Chem Phys Lett 310:57–64. doi:10.1016/S0009-2614(99)00729-0

    Article  CAS  Google Scholar 

  • Kunz R, Timpmann K, Southall J et al (2013) Fluorescence-excitation and emission spectra from LH2 antenna complexes of Rhodopseudomonas acidophila as a function of the sample preparation conditions. J Phys Chem B 117:12020–12029. doi:10.1021/jp4073697

    Article  CAS  PubMed  Google Scholar 

  • Leiger K, Reisberg L, Freiberg A (2013) Fluorescence micro-spectroscopy study of individual photosynthetic membrane vesicles and light-harvesting complexes. J Phys Chem B 117:9315–9326. doi:10.1021/jp4014509

    Article  CAS  PubMed  Google Scholar 

  • Leupold D, Teuchner K, Ehlert J et al (2002) Two-photon excited fluorescence from higher electronic states of chlorophylls in photosynthetic antenna complexes: a new approach to detect strong excitonic chlorophyll a/b coupling. Biophys J 82:1580–1585. doi:10.1016/S0006-3495(02)75509-4

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Leupold D, Teuchner K, Ehlert J et al (2006) Stepwise two-photon excited fluorescence from higher excited states of chlorophylls in photosynthetic antenna complexes. J Biol Chem 281:25381–25387. doi:10.1074/jbc.M600080200

    Article  CAS  PubMed  Google Scholar 

  • Linnanto J, Freiberg A, Korppi-Tommola J (2011) Quantum chemical simulations of excited-state absorption spectra of photosynthetic bacterial reaction center and antenna complexes. J Phys Chem B 115:5536–5544. doi:10.1021/jp111340w

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Berns MW, Konig K et al (1995a) Two-photon fluorescence excitation in continuous-wave infrared optical tweezers. Opt Lett 20:2246–2248. doi:10.1364/OL.20.002246

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Cheng DK, Sonek GJ et al (1995b) Evidence for localized cell heating induced by infrared optical tweezers. Biophys J 68:2137–2144. doi:10.1016/S0006-3495(95)80396-6

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liu Y, Sonek GJ, Berns MW, Tromberg BJ (1996) Physiological monitoring of optically trapped cells: assessing the effects of confinement by 1064-nm laser tweezers using microfluorometry. Biophys J 71:2158–2167. doi:10.1016/S0006-3495(96)79417-1

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lower SK, El-Sayed MA (1966) The triplet state and molecular electronic processes in organic molecules. Chem Rev 66:199–241. doi:10.1021/cr60240a004

    Article  CAS  Google Scholar 

  • Monger TG, Cogdell RJ, Parson WW (1976) Triplet states of bacteriochlorophyll and carotenoids in chromatophores of photosynthetic bacteria. Biochim Biophys Acta BBA—Bioenerg 449:136–153. doi:10.1016/0005-2728(76)90013-X

    Article  CAS  Google Scholar 

  • Niedzwiedzki DM, Blankenship RE (2010) Singlet and triplet excited state properties of natural chlorophylls and bacteriochlorophylls. Photosynth Res 106:227–238. doi:10.1007/s11120-010-9598-9

    Article  CAS  PubMed  Google Scholar 

  • Perkins TT (2009) Optical traps for single molecule biophysics: a primer. Laser Photonics Rev 3:203–220. doi:10.1002/lpor.200810014

    Article  CAS  Google Scholar 

  • Pflock TJ, Oellerich S, Southall J et al (2011) The electronically excited states of LH2 complexes from Rhodopseudomonas acidophila strain 10050 studied by time-resolved spectroscopy and dynamic Monte Carlo simulations. I. Isolated, non-interacting LH2 complexes. J Phys Chem B 115:8813–8820. doi:10.1021/jp202353c

    Article  CAS  PubMed  Google Scholar 

  • Pilát Z, Ježek J, Šerý M et al (2013) Optical trapping of microalgae at 735–1064 nm: photodamage assessment. J Photochem Photobiol B 121:27–31. doi:10.1016/j.jphotobiol.2013.02.006

    Article  PubMed  Google Scholar 

  • Polívka T, Sundström V (2004) Ultrafast dynamics of carotenoid excited states—from solution to natural and artificial systems. Chem Rev 104:2021–2072. doi:10.1021/cr020674n

    Article  PubMed  Google Scholar 

  • Rätsep M, Wu H-M, Hayes JM et al (1998) Stark hole-burning studies of three photosynthetic complexes. J Phys Chem B 102:4035–4044. doi:10.1021/jp980421r

    Article  Google Scholar 

  • Rätsep M, Cai Z-L, Reimers JR, Freiberg A (2011) Demonstration and interpretation of significant asymmetry in the low-resolution and high-resolution Q y fluorescence and absorption spectra of bacteriochlorophyll a. J Chem Phys 134:024506. doi:10.1063/1.3518685

    Article  PubMed  Google Scholar 

  • Rätsep M, Pajusalu M, Linnanto JM, Freiberg A (2014) Subtle spectral effects accompanying the assembly of bacteriochlorophylls into cyclic light harvesting complexes revealed by high-resolution fluorescence spectroscopy. J Chem Phys 141:155102. doi:10.1063/1.4897637

    Article  PubMed  Google Scholar 

  • Rondonuwu FS, Taguchi T, Fujii R et al (2004) The energies and kinetics of triplet carotenoids in the LH2 antenna complexes as determined by phosphorescence spectroscopy. Chem Phys Lett 384:364–371. doi:10.1016/j.cplett.2003.12.024

    Article  CAS  Google Scholar 

  • Sauer K, Cogdell RJ, Prince SM et al (1996) Structure-based calculations of the optical spectra of the LH2 bacteriochlorophyll-protein complex from Rhodopseudomonas acidophila. Photochem Photobiol 64:564–576. doi:10.1111/j.1751-1097.1996.tb03106.x

    Article  CAS  Google Scholar 

  • Schneckenburger H, Hendinger A, Sailer R et al (2000) Cell viability in optical tweezers: high power red laser diode versus Nd:YAG laser. J Biomed Opt 5:40–44. doi:10.1117/1.429966

    Article  CAS  PubMed  Google Scholar 

  • Scholes GD, Gould IR, Cogdell RJ, Fleming GR (1999) Ab initio molecular orbital calculations of electronic couplings in the LH2 bacterial light-harvesting complex of Rps. acidophila. J Phys Chem B 103:2543–2553. doi:10.1021/jp9839753

    Article  CAS  Google Scholar 

  • Şener M, Hsin J, Trabuco LG et al (2009) Structural model and excitonic properties of the dimeric RC–LH1–PufX complex from Rhodobacter sphaeroides. Chem Phys 357:188–197. doi:10.1016/j.chemphys.2009.01.003

    Article  PubMed Central  PubMed  Google Scholar 

  • Siebert CA, Qian P, Fotiadis D et al (2004) Molecular architecture of photosynthetic membranes in Rhodobacter sphaeroides: the role of PufX. EMBO J 23:690–700. doi:10.1038/sj.emboj.7600092

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Stepanenko I, Kompanetz V, Makhneva Z et al (2009) Two-photon excitation spectroscopy of carotenoid-containing and carotenoid-depleted LH2 complexes from purple bacteria. J Phys Chem B 113:11720–11723. doi:10.1021/jp906565m

    Article  CAS  PubMed  Google Scholar 

  • Stepanenko IA, Kompanets VO, Chekalin SV et al (2010) Photosynthetic light-harvesting complexes: fluorescent and absorption spectroscopy under two-photon (1200–1500 nm) and one-photon (600–750 nm) excitation by laser femtosecond pulses. Proc SPIE 7994:79941C. doi:10.1117/12.882498

    Article  Google Scholar 

  • Stepanenko I, Kompanetz V, Makhneva Z et al (2012) Transient absorption study of two-photon excitation mechanism in the LH2 complex from purple bacterium Rhodobacter sphaeroides. J Phys Chem B 116:2886–2890. doi:10.1021/jp2033214

    Article  CAS  PubMed  Google Scholar 

  • Sternlicht H, Nieman GC, Robinson GW (1963) Triplet–triplet annihilation and delayed fluorescence in molecular aggregates. J Chem Phys 38:1326–1335. doi:10.1063/1.1733853

    Article  CAS  Google Scholar 

  • Takiff L, Boxer SG (1988) Phosphorescence spectra of bacteriochlorophylls. J Am Chem Soc 110:4425–4426. doi:10.1021/ja00221a059

    Article  CAS  Google Scholar 

  • Timpmann K, Ellervee A, Pullerits T et al (2001) Short-range exciton couplings in LH2 photosynthetic antenna proteins studied by high hydrostatic pressure absorption spectroscopy. J Phys Chem B 105:8436–8444. doi:10.1021/jp003496f

    Article  CAS  Google Scholar 

  • Walz T, Jamieson SJ, Bowers CM et al (1998) Projection structures of three photosynthetic complexes from Rhodobacter sphaeroides: LH2 at 6 Å, LH1 and RC-LH1 at 25 Å. J Mol Biol 282:833–845. doi:10.1006/jmbi.1998.2050

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Estonian Research Council (Grant IUT02-28) and the Australian Research Council Discovery Project (Grant DP150103137). The authors thank A. Moskalenko and A. Ashikhmin for kindly providing the Ectothiorhodospira haloalkaliphila samples and I. Proskuryakov for useful discussions.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristjan Leiger.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leiger, K., Freiberg, A. Up-converted fluorescence from photosynthetic light-harvesting complexes linearly dependent on excitation intensity. Photosynth Res 127, 77–87 (2016). https://doi.org/10.1007/s11120-015-0117-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-015-0117-x

Keywords

Navigation