Skip to main content
Log in

Differences in energy transfer of a cyanobacterium, Synechococcus sp. PCC 7002, grown in different cultivation media

  • Regular Paper
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Currently, cyanobacteria are regarded as potential biofuel sources. Large-scale cultivation of cyanobacteria in seawater is of particular interest because seawater is a low-cost medium. In the present study, we examined differences in light-harvesting and energy transfer processes in the cyanobacterium Synechococcus sp. PCC 7002 grown in different cultivation media, namely modified A medium (the optimal growth medium for Synechococcus sp. PCC 7002) and f/2 (a seawater medium). The concentrations of nitrate and phosphate ions were varied in both media. Higher nitrate ion and/or phosphate ion concentrations yielded high relative content of phycobilisome. The cultivation medium influenced the energy transfers within phycobilisome, from phycobilisome to photosystems, within photosystem II, and from photosystem II to photosystem I. We suggest that the medium also affects charge recombination at the photosystem II reaction center and formation of a chlorophyll-containing complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

APC:

Allophycocyanin

Car:

Carotenoid

Chl:

Chlorophyll

FDAS:

Fluorescence decay-associated spectrum (spectra)

PBS:

Phycobilisome

PC:

Phycocyanin

PE:

Phycoerythrin

PS:

Photosystem

TRFS:

Time-resolved fluorescence spectrum (spectra)

References

  • Aikawa S, Nishida A, Ho S-H, Chang J-S, Hasunuma T, Kondo A (2014) Glycogen production for biofuels by the euryhaline cyanobacteria Synechococcus sp. strain PCC 7002 from an oceanic environment. Biotechnol Biofuels 7:88

    Article  PubMed Central  PubMed  Google Scholar 

  • Akimoto S, Yokono M, Hamada F, Teshigahara A, Aikawa S, Kondo A (2012) Adaptation of light-harvesting systems of Arthrospira platensis to light conditions, probed by time-resolved fluorescence spectroscopy. Biochim Biophys Acta 1817:1483–1489

    Article  CAS  PubMed  Google Scholar 

  • Akimoto S, Yokono M, Aikawa S, Kondo A (2013) Modification of energy-transfer processes in the cyanobacterium, Arthrospira platensis, to adapt to light conditions, probed by time-resolved fluorescence spectroscopy. Photosynth Res 117:235–243

    Article  CAS  PubMed  Google Scholar 

  • Allakhverdiev SI, Nishiyama Y, Miyairi S, Yamamoto H, Inagaki N, Kanesaki Y, Murata N (2002) Salt stress inhibits the repair of photodamaged photosystem II by suppressing the transcription and translation of psbAGenes in Synechocystis. Plant Physiol 130:1443–1453

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Allen MM, Smith AJ (1969) Nitrogen chlorosis in blue-green algae. Arch Mikrobiol 69:114–120

    Article  CAS  PubMed  Google Scholar 

  • Arba M, Aikawa S, Niki K, Yokono M, Kondo A, Akimoto S (2013) Differences in excitation energy transfer of Arthrospira platensis cells grown in seawater medium and freshwater medium, probed by time-resolved fluorescence spectroscopy. Chem Phys Lett 588:231–236

    Article  CAS  Google Scholar 

  • Bennett A, Bogorad L (1973) Complementary chromatic adaptation in a filamentous blue–green alga. J Cell Biol 58:419–435

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bibby TS, Nield J, Barber J (2001) Iron deficiency induces the formation of an antenna ring around trimeric photosystem I in cyanobacteria. Nature 412:743–745

    Article  CAS  PubMed  Google Scholar 

  • Boardman NK, Thome SW, Anderson JM (1966) Fluorescence properties of particles obtained by digitonin fragmentation of spinach chloroplasts. Proc Natl Acad Sci USA 56:586–593

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Collier JL, Herbert SK, Fork DC, Grossman AR (1994) Changes in the cyanobacterial photosynthetic apparatus during acclimation to macronutrient deprivation. Photosynth Res 42:173–183

    Article  CAS  PubMed  Google Scholar 

  • Cousins AB, Johnson M, Leakey ADB (2014) Photosynthesis and the environment. Photosynth Res 119:1–2

    Article  CAS  PubMed  Google Scholar 

  • Dismukes GC, Carrieri D, Bennette N, Ananyev GM, Posewitz MC (2008) Aquatic phototrophs: efficient alternatives to land-based crops for biofuels. Curr Opin Biotechnol 19:235–240

    Article  CAS  PubMed  Google Scholar 

  • Gantt E (1981) Phycobilisomes. Ann Rev Plant Physiol 32:327–347

    Article  CAS  Google Scholar 

  • Ghosh AK, Govindjee (1966) Transfer of the excitation energy in Anacystis nidulans grown to obtain different pigment ratios. Biophys J 6:611–619

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Goedheer JC (1972) Fluorescence in relation to photosynthesis. Ann Rev Plant Physiol 23:87–112

    Article  CAS  Google Scholar 

  • Govindjee (2004) Chlorophyll a fluorescence: a bit of basics and history. In: Papageorgiou GC, Govindjee (eds) Chlorophyll a Fluorescence: a signature of photosynthesis. Kluwer Academic Publishers, Dordrecht, pp 1–42

    Chapter  Google Scholar 

  • Grossman AR, Schaefer MR, Chiang GG, Collier JL (1993) The phycobilisome, a light-harvesting complex responsive to environmental conditions. Microbial Rev 57:725–749

    CAS  Google Scholar 

  • Guillard RRL, Ryther JH (1962) Studies of marine planktonic diatoms: I. Cyclotella nana Hustedt, and Detonula confervacea (Cleve) Gran. Can J Microbiol 8:229–239

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Zhang H, Niedzwiedzki DM, Prado P, He G, Gross ML, Blankenship RE (2013) Phycobilisomes supply excitations to both photosystems in a megacomplex in cyanobacteria. Science 342:1104–1107

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mary Leema JT, Kirubagaran R, Vinithkumar NV, Dheenan PS, Karthikayulu S (2010) High value pigment production from Arthrospira (Spirulina) platensis cultured in seawater. Bioresour Technol 101:9221–9227

    Article  CAS  Google Scholar 

  • Michel K-P, Pistorius EK (2004) Adaptation of the photosynthetic electron transport chain in cyanobacteria to iron deficiency: the function of IdiA and IsiA. Physiol Plant 120:36–50

    Article  CAS  PubMed  Google Scholar 

  • Mimuro M, Kikuchi H (2003) Antenna systems and energy transfer in Cyanophyta and Rhodophyta. In: Green BR, Parson WW (eds) Light-harvesting antennas in photosynthesis. Kluwer Academic Publishers, Dordrecht, pp 281–306

    Chapter  Google Scholar 

  • Mimuro M, Akimoto S, Tomo T, Yokono M, Miyashita H, Tsuchiya T (2007) Delayed fluorescence observed in the nanosecond time region at 77 K originates directly from the photosystem II reaction center. Biochim Biophys Acta 1767:327–334

    Article  CAS  PubMed  Google Scholar 

  • Mimuro M, Yokono M, Akimoto S (2010) Variations in photosystem I properties in the primordial cyanobacterium Gloeobacter violaceus PCC 7421. Photochem Photobiol 86:62–69

    Article  CAS  PubMed  Google Scholar 

  • Nakayama K, Yamaoka T, Katoh S (1979) Chromatographic separation of photosystems I and II from the thylakoid membrane isolated from a thermophilic blue-green alga. Plant Cell Physiol 20:1565–1576

    CAS  Google Scholar 

  • Peter P, Sarma AP, Azeen ul Hasan M, Murthy SDS (2010) Studies on the impact of nitrogen starvation on the photosynthetic pigments through spectral properties of the cyanobacterium, Spirulina platensis: identification of target phycobiliprotein under nitrogen chlorosis. Bot Res Int 3:30–34

    CAS  Google Scholar 

  • Riethman H, Bullerjahn G, Reddy KJ, Sherman LA (1988) Pegulation of cyanobacterial pigment-protein composition and organization by environmental factors. Photosynth Res 18:133–161

    Article  CAS  PubMed  Google Scholar 

  • Stowe-Evans EL, Kehoe DM (2004) Signal transduction during light-quality acclimation in cyanobacteria: a model system for understanding phytochrome-response pathways in prokaryotes. Photochem Photobiol Sci 3:495–502

    Article  CAS  PubMed  Google Scholar 

  • Su H-N, Xie B-B, Zhang X-Y, Zhou B-C, Zhang Y-Z (2010) The suptramolecular architecture, function, and regulation of thylakoid membranes in red algae: an overview. Photosynth Res 106:73–87

    Article  CAS  PubMed  Google Scholar 

  • Yokono M, Akimoto S, Koyama K, Tsuchiya T, Mimuro M (2008) Energy transfer processes in Gloeobacter violaceus PCC 7421 that possesses phycobilisomes with a unique morphology. Biochim Biophys Acta 1777:55–65

    Article  CAS  PubMed  Google Scholar 

  • Yokono M, Murakami A, Akimoto S (2011) Excitation energy transfer between photosystem II and photosystem I in red algae: larger amounts of phycobilisome enhance spillover. Biochim Biophys Acta 1807:847–853

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by a Grant-in-Aid for Scientific Research from JSPS (Nos. 22370017 and 23370013) to S. Akimoto.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seiji Akimoto.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niki, K., Aikawa, S., Yokono, M. et al. Differences in energy transfer of a cyanobacterium, Synechococcus sp. PCC 7002, grown in different cultivation media. Photosynth Res 125, 201–210 (2015). https://doi.org/10.1007/s11120-015-0079-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-015-0079-z

Keywords

Navigation