Skip to main content
Log in

Regulation of photosynthesis during heterocyst differentiation in Anabaena sp. strain PCC 7120 investigated in vivo at single-cell level by chlorophyll fluorescence kinetic microscopy

  • Regular Paper
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Changes of photosynthetic activity in vivo of individual heterocysts and vegetative cells in the diazotrophic cyanobacterium Anabaena sp. strain PCC 7120 during the course of diazotrophic acclimation were determined using fluorescence kinetic microscopy (FKM). Distinct phases of stress and acclimation following nitrogen step-down were observed. The first was a period of perception, in which the cells used their internally stored nitrogen without detectable loss of PS II activity or pigments. In the second, the stress phase of nitrogen limitation, the cell differentiation occurred and an abrupt decline of fluorescence yield was observed. This decline in fluorescence was not paralleled by a corresponding decline in photosynthetic pigment content and PS II activity. Both maximal quantum yield and sustained electron flow were not altered in vegetative cells, only in the forming heterocysts. The third, acclimation phase started first in the differentiating heterocysts with a recovery of PS II photochemical yields \(F_{\text{v}} /F_{\text{m}} ,\;F^{\prime}_{\text{v}} /F^{\prime}_{\text{m}}.\) Afterwards, the onset of nitrogenase activity was observed, followed by the restoration of antenna pigments in the vegetative cells, but not in the heterocysts. Surprisingly, mature heterocysts were found to have an intact PS II as judged by photochemical yields, but a strongly reduced PS II-associated antenna as judged by decreased F 0. The possible importance of the functional PS II in heterocysts is discussed. Also, the FKM approach allowed to follow in vivo and evaluate the heterogeneity in photosynthetic performance among individual vegetative cells as well as heterocysts in the course of diazotrophic acclimation. Some cells along the filament (so-called “superbright cells”) were observed to display transiently increased fluorescence yield, which apparently proceeded by apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

Chl:

Chlorophyll

FKM:

Fluorescence kinetic microscope as defined by Küpper et al. (2000)

F 0 :

Minimal fluorescence yield of a dark adapted sample in non-actinic measuring light

F m :

Maximum fluorescence yield of a dark adapted sample

F s :

Steady state fluorescence under actinic irradiance, after the end of the induction transient

F v :

F m − F 0 = Variable fluorescence

F p :

Fluorescence yield at the peak of the induction curve after the onset of actinic light

FY:

Fluorescence yield

NSD:

Nitrogen step-down

NPQ:

(F m − \(F^{\prime}_{\text{m}})\)/F m = Non-photochemical quenching

PBS:

Phycobilisomes

PS:

Photosystem

ΔF :

\(F^{\prime}_{\text{m}} -F^{\prime}_{\text{t}}\), i.e., the response of fluorescence yield to a saturating irradiation pulse in light acclimated state

ΦPSII :

\(F^{\prime}_{\text{m}} -F^{\prime}_{\text{t}}/F^{\prime}_{\text{m}}\) = Light-acclimated electron flow through PS II (Genty et al. 1989)

References

  • Adamec F, Kaftan D, Nedbal L (2005) Stress-induced filament fragmentation of Calothrix elenkinii (Cyanobacteria) is facilitated by death of high-fluorescence cells. J Phycol 41:835–839

    Article  Google Scholar 

  • Adams DG (2000) Heterocyst formation in cyanobacteria. Curr Opin Microbiol 3:518–624

    Article  Google Scholar 

  • Allen MB, Arnon DI (1955) Studies on nitrogen-fixing blue-green algae. I. Growth and nitrogen fixation by Anabaena cylindrica Lemm. Plant Physiol 30:366–372

    Article  PubMed  CAS  Google Scholar 

  • Allen JF, Mullineaux CW (2004) Probing the mechanism of state transitions in oxygenic photosynthesis by chlorophyll fluorescence spectroscopy, kinetics and imaging. In: Papageorgiou GC, Govindjee (eds) Chlorophyll a fluorescence: a signature of photosynthesis advances in photosynthesis and respiration. Springer, Dordrecht, pp 663–678

    Google Scholar 

  • Almon H, Böhme H (1980) Components of activity of the photosynthetic electron transport system of intact heterocysts isolated from the blue-green algae Nostoc muscorum. Biochim Biophys Acta 592:113–120

    Article  PubMed  CAS  Google Scholar 

  • Andresen E, Lohscheider J, Setlikova E, Adamska I, Simek M, Küpper H (2010) Acclimation of Trichodesmium erythraeum ISM101 to high and low irradiance analysed on the physiological, biophysical and biochemical level. New Phytol 185:173–188

    Article  PubMed  CAS  Google Scholar 

  • Bergman B, Gallon JR, Rai AN, Stal LJ (1997) N2 fixation by non-heterocystous cyanobacteria. FEMS Microbiol Rev 19:139–185

    Article  CAS  Google Scholar 

  • Berman-Frank I, Lundgren P, Chen YB, Küpper H, Kolber Z, Bergman B, Falkowski P (2001) Segregation of nitrogen fixation and oxygenic photosynthesis in the marine cyanobacterium Trichodesmium. Science 294:1534–1537

    Article  PubMed  CAS  Google Scholar 

  • Berman-Frank I, Lundgren P, Falkowski P (2003) Nitrogen fixation and photosynthetic oxygen evolution in cyanobacteria. Res Microbiol 154:157–164

    Article  PubMed  CAS  Google Scholar 

  • Biggins J, Bruce D (1989) Regulation of excitation-energy transfer in organisms containing phycobilins. Photosynth Res 20:1–34

    Article  CAS  Google Scholar 

  • Bradley S, Carr NG (1971) The absence of functional photosystem II in heterocysts of Anabaena cylindrica. J Gen Microbiol 68:13–14

    Google Scholar 

  • Brusca JS, Hale MS, Carrasco CD, Golden JW (1989) Excision of an 11-kilobase-pair DNA element from within the nifD gene in Anabaena variabilis heterocysts. J Bacteriol 171:4138–4145

    PubMed  CAS  Google Scholar 

  • Cardona T, Battchikova N, Zhang PP, Stensjo K, Aro EM, Lindblad P, Magnuson A (2009) Electron transfer protein complexes in the thylakoid membranes of heterocysts from the cyanobacterium Nostoc punctiforme. Biochim Biophys Acta 1787:252–263

    Article  PubMed  CAS  Google Scholar 

  • Donze M, Haveman J, Schiereck P (1972) Absence of photosystem II in heterocysts of the blue-green algae Anabaena. Biochim Biophys Acta 256:157–161

    Article  PubMed  CAS  Google Scholar 

  • Ehira S, Ohmori M, Sato N (2003) Genome-wide expression analysis of the responses to nitrogen deprivation in the heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120. DNA Res 10:97–113

    Article  PubMed  CAS  Google Scholar 

  • Fay P, Kulasooriya SA (1972) Tetrazolium reduction and nitrogenase activity in heterocystous blue-green algae. Arch Microbiol 87:341–352

    CAS  Google Scholar 

  • Fay P, Walshby AE (1966) Metabolic activities of isolated heterocysts of the blue-green alga Anabaena cylindrica. Nature 209:94–95

    Article  PubMed  CAS  Google Scholar 

  • Fiedler G, Arnold M, Hannus S, Maldener I (1998) The DevBCA exporter is essential for envelope formation in heterocysts of the cyanobacterium Anabaena sp. strain PCC 7120. Mol Microbiol 27:1193–1202

    Article  PubMed  CAS  Google Scholar 

  • Flaherty BL, Van Nieuwerburgh F, Head SR, Golden JW (2011) Directional RNA deep sequencing sheds new light on the transcriptional response of Anabaena sp. strain PCC 7120 to combined-nitrogen deprivation. BMC Genomics 12:332

    Article  PubMed  CAS  Google Scholar 

  • Flores E, Herrero A (2010) Compartmentalized function through cell differentiation in filamentous cyanobacteria. Nat Rev Microbiol 8:39–50

    Article  PubMed  CAS  Google Scholar 

  • Genty B, Briantais J, Baker NR (1989) The relationship between the quantum yield of photosynthetic electron-transport and quenching of chlorophyll fluorescence. Biochem Biophys Acta 990:87–92

    Article  CAS  Google Scholar 

  • Hardy RWF (1973) Applications of the acetylene reduction assay for nitrogenase. Soil Biol Biochem 5:47–81

    Article  CAS  Google Scholar 

  • Hebbar PB, Curtis SE (2000) Characterization of devH, a gene encoding a putative DNA binding protein required for heterocyst function in Anabaena sp. strain PCC 7120. J Bacteriol 182:3572–3581

    Article  PubMed  CAS  Google Scholar 

  • Herrero A, Muro-Pastor AM, Valladares A, Flores E (2004) Cellular differentiation and the NtcA transcription factor in filamentous bacteria. FEMS Microbiol Rev 28:469–487

    Article  PubMed  CAS  Google Scholar 

  • Jones KM, Haselkorn R (2002) Newly identified cytochrome c oxidase operon in the nitrogen-fixing cyanobacterium Anabaena sp. strain PCC 7120 specifically induced in heterocysts. J Bacteriol 184:2491–2499

    Article  PubMed  CAS  Google Scholar 

  • Kana TM (1993) Rapid oxygen cycling in Trichodesmium thiebautii. Limnol Oceanogr 38:18–24

    Article  CAS  Google Scholar 

  • Kaňa R, Prášil O, Komárek O, Papageorgiou GC, Govindjee (2009) Spectral characteristic of fluorescence induction in a model cyanobacterium, Synechococcus sp (PCC 7942). Biochim Biophys Acta 1787:1170–1178

    Article  PubMed  Google Scholar 

  • Kaňa R, Kotabová E, Komárek O, Šedivá B, Papageorgiou GC, Govindjee, Prášil O (2012) The slow S to M fluorescence rise in cyanobacteria is due to a state 2 to state 1 transition. Biochim Biophys Acta 1817:1237–1247

    Article  PubMed  Google Scholar 

  • Kirilovsky D, Kerfeld CA (2012) The orange carotenoid protein in photoprotection of photosystem II in cyanobacteria. Biochim Biophys Acta 1817:158–166

    Article  PubMed  CAS  Google Scholar 

  • Kumar K, Mella-Herrera RA, Golden JW (2010) Cyanobacterial heterocysts. Cold Spring Harb Perspect Biol 2:a000315

    Article  PubMed  Google Scholar 

  • Kumazaki S, Akari M, Hasegawa M (2013) Transformation of thylakoid membranes during differentiation from vegetative cell into heterocyst visualized by microscopic spectral imaging. Plant Physiol 161:1321–1333

    Article  PubMed  CAS  Google Scholar 

  • Küpper H, Šetlík I, Trtílek M, Nedbal L (2000) A microscope for two-dimensional measurements of in vivo chlorophyll fluorescence kinetics using pulsed measuring radiation, continuous actinic radiation, and saturating flashes. Photosynthetica 38:553–570

    Article  Google Scholar 

  • Küpper H, Ferimazova N, Šetlík I, Berman-Frank I (2004) Traffic lights in Trichodesmium. Regulation of photosynthesis for nitrogen fixation studied by chlorophyll fluorescence kinetic microscopy. Plant Physiol 135:2120–2133

    Article  PubMed  Google Scholar 

  • Küpper H, Aravind P, Leitenmaier B, Trtílek M, Šetlík I (2007a) Cadmium-induced inhibition of photosynthesis and long-term acclimation to Cd-stress in the Cd hyperaccumulator Thlaspi caerulescens. New Phytol 175:655–674

    Article  PubMed  Google Scholar 

  • Küpper H, Seibert S, Parameswaran A (2007b) Fast, sensitive, and inexpensive alternative to analytical pigment HPLC: quantification of chlorophylls and carotenoids in crude extracts by fitting with gauss peak spectra. Anal Chem 79:7611–7627

    Article  PubMed  Google Scholar 

  • Küpper H, Šetlík I, Seibert S, Prášil O, Šetlíková E, Strittmatter M, Levitan O, Lohscheider J, Adamska I, Berman-Frank I (2008) Iron limitation in the marine cyanobacterium Trichodesmium reveals new insights into regulation of photosynthesis and nitrogen fixation. New Phytol 179:784–798

    Article  PubMed  Google Scholar 

  • Küpper H, Andresen E, Wiegert S, Šimek M, Leitenmaier B, Šetlík I (2009) Reversible coupling of individual phycobiliprotein isoforms during state transitions in the cyanobacterium Trichodesmium analysed by single-cell fluorescence kinetic measurements. Biochim Biophys Acta 1787:155–167

    Article  PubMed  Google Scholar 

  • Lang N, Fay P (1971) The heterocysts of blue-green algae. II. Details of ultrastructure. Proc R Soc Lond B 178:193–203

    Article  Google Scholar 

  • Lex M, Carr NG (1974) The metabolism of glucose by heterocysts and vegetative cells of Anabaena cylindrica. Arch Microbiol 101:161–167

    Article  PubMed  CAS  Google Scholar 

  • Lockau W, Peterson RB, Wolk CP, Burris RH (1978) Modes of reduction of nitrogenase in heterocysts isolated from Anabaena species. Biochim Biophys Acta 502:298–308

    Article  PubMed  CAS  Google Scholar 

  • Maldener I, Muro-Pastor AM (2010) Cyanobacterial heterocysts. In: Encyclopedia of life sciences (ELS). Wiley, New York

  • Maldener I, Fiedler G, Ernst A, Fernandez-Pinas F, Wolk CP (1994) Characterization of devA, a gene required for the maturation of proheterocysts in the cyanobacterium Anabaena sp. strain PCC 7120. J Bacteriol 176:7543–7549

    PubMed  CAS  Google Scholar 

  • Meeks JC, Elhai J (2002) Regulation of cellular differentiation in filamentous cyanobacteria in free-living and plant-associated symbiotic growth states. Microbiol Mol Biol Rev 66:94–121

    Article  PubMed  CAS  Google Scholar 

  • Milligan AJ, Berman-Frank I, Gerchman Y, Dismukes GC, Falkowski PG (2007) Light-dependent oxygen consumption in nitrogen-fixing cyanobacteria plays a key role in nitrogenase protection. J Phycol 43:845–852

    Article  CAS  Google Scholar 

  • Mitschke J, Vioque A, Haas F, Hess WR, Muro-Pastor AM (2011) Dynamics of transcriptional start site selection during nitrogen stress-induced cell differentiation in Anabaena sp. PCC7120. Proc Natl Acad Sci USA 108:20130–20135

    Article  PubMed  CAS  Google Scholar 

  • Muro-Pastor AM, Hess WR (2012) Heterocyst differentiation: from single mutants to global approaches. Trends Microbiol 20:548–557

    Article  PubMed  CAS  Google Scholar 

  • Murry MA, Olafsen AG, Benemann JR (1981) Oxidation of diaminobenzidine in the heterocyst of Anabaena cylindrica. Curr Microbiol 6:201–206

    Article  CAS  Google Scholar 

  • Oxborough K, Baker NR (1997) Resolving chlorophyll a fluorescence images of photosynthetic efficiency into photochemical and non-photochemical components: calculation of qP and \(F^{\prime}_{v} /F^{\prime}_{m}\) without measuring F 0′. Photosynth Res 54(2):135–142

    Article  CAS  Google Scholar 

  • Porra RJ, Thompson WA, Kriedemann PE (1989) Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophyll-a and chlorophyll-b extracted with 4 different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochim Biophys Acta 975:384–394

    Article  CAS  Google Scholar 

  • Postgate JR (1998) Nitrogen fixation, 3rd edn. Cambridge University Press, Cambridge 112

    Google Scholar 

  • Roháček K (2002) Chlorophyll fluorescence parameters: the definitions, photosynthetic meaning, and mutual relationships. Photosynthetica 40:13–29

    Article  Google Scholar 

  • Šetlíková E, Šetlík I, Küpper H, Kasalický V, Prášil O (2005) The photosynthesis of individual algal cells during the cell cycle of Scenedesmus quadricauda studied by chlorophyll fluorescence kinetic microscopy. Photosynth Res 84:113–120

    Article  PubMed  Google Scholar 

  • Smith DL, Partiquin DG, Dijak M, Curry GM (1986) The effect of light-dependent oxygen consumption on nitrogenase activity in Anabaena cylindrica. Can J Bot 64:1843–1848

    Article  CAS  Google Scholar 

  • Stewart WD, Haystead A, Pearson HW (1969) Nitrogenase activity in heterocysts of blue-green algae. Nature 224:226–228

    Article  PubMed  CAS  Google Scholar 

  • Strohmeier U, Gerdes C, Lockau W (1994) Proteolysis in heterocyst-forming cyanobacteria: characterization of a further enzyme with trypsine-like specifity, and of a prolyl endopeptidase from Anabaena variabilis. Z Naturforsch C 49:70–78

    PubMed  CAS  Google Scholar 

  • Sugiura K, Itoh S (2012) Single-Cell confocal spectrometry of a filamentous cyanobacterium Nostoc at room and cryogenic temperature. Diversity and differentiation of pigment systems in 311 cells. Plant Cell Physiol 53:1492–1506

    Article  PubMed  CAS  Google Scholar 

  • Tel-Or E, Stewart WDP (1975) Manganese and photosynthetic oxygen evolution by algae. Nature 258:715–716

    Article  CAS  Google Scholar 

  • Tel-Or E, Stewart WDP (1976) Photosynthetic electron transport. ATP synthesis and nitrogenase activity in isolated heterocysts of Anabaena cylindrica. Biochim Biophys Acta 423:189–195

    Article  PubMed  CAS  Google Scholar 

  • Tel-Or E, Lujik W, Parker L (1977) An inducible hydrogenase in cyanobacteria enchances N2 fixation. FEBS Lett 78:49–52

    Article  PubMed  CAS  Google Scholar 

  • Valladares A, Herrero A, Pils D, Schmetterer G, Flores E (2003) Cytochrome c oxidase genes required for nitrogenase activity and diazotrophic growth in Anabaena sp. PCC 7120. Mol Microbiol 47(5):1239–1249

    Article  PubMed  CAS  Google Scholar 

  • Winkenbach F, Wolk CP (1973) Activities of enzymes of the oxidative and reductive pentose phosphate pathways in heterocysts of a blue-green alga. Plant Physiol 52:480–483

    Article  PubMed  CAS  Google Scholar 

  • Wolk CP (1996) Heterocyst formation. Annu Rev Genet 30:59–78

    Article  PubMed  CAS  Google Scholar 

  • Wolk CP, Simon RD (1969) Pigments and lipids of heterocysts. Planta 97:126–134

    Article  Google Scholar 

  • Wolk CP, Ernst A, Elhai J (1994) Heterocyst metabolism and development. In: Bryant DA (ed) The molecular biology of cyanobacteria. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Xu X, Elhai J, Wolk CP (2008) Transcriptional and developmental responses by Anabaena to deprivation of fixed nitrogen. In: Herrero A, Flores E (eds) The cyanobacteria molecular biology, genomics and evolution. Caister Academic Press, Norfolk, pp 382–422

    Google Scholar 

  • Ying L, Huang X, Huang B, Xie J, Zhao J, Zhao XS (2002) Fluorescence emission and absorption spectra of single Anabaena sp. strain PCC7120 cells. Photochem Photobiol 76(3):310–313

    Article  PubMed  CAS  Google Scholar 

  • Zhang C-C, Laurent S, Sakr S, Peng L, Bedú S (2006) Heterocyst differentiation and pattern formation in cyanobacteria: a chorus of signals. Mol Microbiol 59:367–375

    Article  PubMed  CAS  Google Scholar 

  • Zhao J, Wolk CP (2008) Developmental biology of heterocysts, 2006. In: DE Whitworth (ed) Myxobacteria: multicellularity and differentiation. ASM Press, Washington, D.C., pp 397–418

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Vit’a Lukes for help with data analysis. Financial support was provided by the GACR grant 206/08/1683 and by the project Algatech (CZ.1.05/2.1.00/03.0110). HK would like to thank the “Studienstiftung des Deutschen Volkes” for a fellowship during the initial part of this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ondřej Prášil.

Additional information

This paper is dedicated to Dr. Ivan Šetlík (1928–2009), our friend and mentor, who initiated this and several other studies on single-cell physiology of algae and diazotrophic cyanobacteria and was involved in the construction of the fluorescence kinetic microscope.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 77 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferimazova, N., Felcmanová, K., Šetlíková, E. et al. Regulation of photosynthesis during heterocyst differentiation in Anabaena sp. strain PCC 7120 investigated in vivo at single-cell level by chlorophyll fluorescence kinetic microscopy. Photosynth Res 116, 79–91 (2013). https://doi.org/10.1007/s11120-013-9897-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-013-9897-z

Keywords

Navigation