Skip to main content

Advertisement

Log in

A model for describing the light response of the nonphotochemical quenching of chlorophyll fluorescence

  • Regular Paper
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

The operation of photosynthetic energy-dissipating processes is commonly characterized by measuring the light response of the nonphotochemical quenching (NPQ) of chlorophyll fluorescence, or NPQ versus E curves. This study proposes a mathematical model for the quantitative description of the generic NPQ versus E curve. The model is an adaptation of the Hill equation and is based on the close dependence of NPQ on the xanthophyll cycle (XC). The model was tested on NPQ versus E curves measured in the plant Arabidopsis thaliana and the diatom Nitzschia palea, representing the two main types of XC, the violaxanthin–antheraxanthin–zeaxanthin (VAZ) type and the diadinoxanthin–diatoxanthin (DD–DT) type, respectively. The model was also fitted to a large number of published light curves, covering the widest possible range of XC types, taxa, growth conditions, and experimental protocol of curve generation. The model provided a very good fit to experimental and published data, coping with the large variability in curve characteristics. The model was further used to quantitatively compare the light responses of NPQ and of PSII electron transport rate, ETR, through the use of indices combining parameters of the models describing the two types of light–response curves. Their application to experimental and published data showed a systematic large delay of the buildup of NPQ relatively to the saturation of photochemistry. It was found that when ETR reaches saturation, NPQ is on average still below one fifth of its maximum attainable level, which is only reached at irradiances about three times higher. It was also found that organisms having the DD–DT type of XC appeared to be able to start operating the XC at lower irradiances than those of the VAZ type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

α:

Initial slope of the ETR versus E curve

Ax:

Antheraxanthin

DD:

Diadinoxanthin

DT:

Diatoxanthin

E :

PAR irradiance (μmol m−2 s−1)

E 50 :

Irradiance level corresponding to 50% of NPQm in a NPQ versus E curve

E k :

Light-saturation parameter of the ETR versus E curve

ETR:

PSII relative electron transport rate

ETRm :

Maximum ETR in a ETR versus E curve

Fo, Fm:

Minimum and maximum fluorescence of a dark-adapted sample

Fs, \( F_{\text{m}}^{'} \):

Steady state and maximum fluorescence of a light-adapted sample

NPQ:

Nonphotochemical quenching

NPQm :

Maximum NPQ value reached in a NPQ versus E curve

\( {\text{NPQ}}_{{E_{\text{k}} }} \) :

Fraction of NPQm reached when E = E k

n :

Sigmoidicity coefficient of the NPQ versus E curve

PSII:

Photosystem II

RLC:

Rapid light–response curve

VAZ:

Vx–Ax–Zx XC

Vx:

Violaxanthin

XC:

Xanthophyll cycle

Zx:

Zeaxanthin

References

  • Bailleul B, Rogato A, Martino A, Coesel S, Cardol P, Bowler C, Falciatore A, Finazzi G (2010) An atypical member of the light-harvesting complex stress-related protein family modulates diatom responses to light. Proc Natl Acad Sci USA 107:18214–18219

    Article  PubMed  CAS  Google Scholar 

  • Baker NR, Oxborough K (2004) Chlorophyll fluorescence as probe of plant photosynthetic productivity. In: Papageorgiou GC, Govindjee (eds) Chlorophyll a fluorescence: a signature of photosynthesis. Springer, Dordrecht, pp 65–82

    Google Scholar 

  • Behrenfeld MJ, Prasil O, Babin M, Bruyant F (2004) In search of a physiological basis for covariations in light-limited and light-saturated photosynthesis. J Phycol 40:4–25

    Article  CAS  Google Scholar 

  • Bilger W, Bjorkman O (1990) Role of the xanthophyll cycle in photoprotection elucidated by measurements of light-induced absorbance changes, fluorescence and photosynthesis in leaves of Hedera canariensis. Photosynth Res 25:173–185

    Article  CAS  Google Scholar 

  • Burritt DJ, Mackenzie S (2003) Antioxidant metabolism during acclimation of Begonia × erytrophylla to high light levels. Ann Bot 91:783–794

    Article  PubMed  CAS  Google Scholar 

  • Campbell D, Hurry V, Clarke AK, Gustafsson P, Gunnar Ö (1998) Chlorophyll fluorescence analysis of cyanobacterial photosynthesis and acclimation. Microbiol Molec Biol Rev 62:667–683

    CAS  Google Scholar 

  • Cosgrove J, Borowitzka M (2006) Applying pulse amplitude modulation (PAM) fluorometry to microalgae suspensions: stirring potentially impacts fluorescence. Photosynth Res 88:343–350

    Article  PubMed  CAS  Google Scholar 

  • Cruz S, Serôdio J (2008) Relationship of rapid light curves of variable fluorescence to photoacclimation and non-photochemical quenching in a benthic diatom. Aquat Bot 88:256–264

    CAS  Google Scholar 

  • D’Haese D, Vandermeiren K, Caubergs RJ, Guisez Y, De Temmerman L, Horemans N (2004) Non-photochemical quenching kinetics during the dark to light transition in relation to the formation of antheraxanthin and zeaxanthin. J Theor Biol 227:175–186

    Article  PubMed  Google Scholar 

  • Demmig-Adams B, Adams WW (2006) Photoprotection in an ecological context: the remarkable complexity of thermal energy dissipation. New Phytol 172:11–21

    Article  PubMed  CAS  Google Scholar 

  • Dimier C, Corato F, Saviello G, Brunet C (2007a) Photophysiological properties of the marine picoeukaryote Picochlorum Rcc 237 (Trebouxiophyceae, Chlorophyta). J Phycol 43:275–283

    Article  CAS  Google Scholar 

  • Dimier C, Corato F, Tramontano F, Brunet C (2007b) Photoprotection and xanthophyll-cycle activity in three marine diatoms. J Phycol 43:937–947

    Article  CAS  Google Scholar 

  • Eberhard S, Finazzi G, Wollman F (2008) The dynamics of photosynthesis. Ann Rev Gen 42:463–515

    Article  CAS  Google Scholar 

  • Eilers PH, Peeters JC (1988) A model for the relationship between light intensity and the rate of photosynthesis in phytoplankton. Ecol Model 42:199–215

    Article  Google Scholar 

  • Elrad D, Niyogi KK, Grossman AR (2002) A major light-harvesting polypeptide of photosystem II functions in thermal dissipation. Plant Cell 14:1801–1816

    Article  PubMed  CAS  Google Scholar 

  • Geel C, Verluis W, Snel JF (1997) Estimation of oxygen evolution by marine phytoplankton from measurement of the efficiency of photosystem II electron flow. Photosynth Res 51:61–70

    Article  CAS  Google Scholar 

  • Genty B, Briantais JM, Baker NR (1989) The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta 990:87–92

    CAS  Google Scholar 

  • Goss R, Jakob T (2010) Regulation and function of xanthophyll cycle-dependent photoprotection in algae. Photosynth Res 106:103–122

    Article  PubMed  CAS  Google Scholar 

  • Goss R, Pinto EA, Wilhelm C, Richter M (2006) The importance of a highly active and ΔpH-regulated diatoxanthin epoxidase for the regulation of the PS II antenna function in diadinoxanthin cycle containing algae. J Plant Physiol 163:1008–1021

    Article  PubMed  CAS  Google Scholar 

  • Guarini J, Moritz C (2009) Modelling the dynamics of the electron transport rate measured by PAM fluorimetry during rapid light curve experiments. Photosynthetica 47:206–214

    Article  Google Scholar 

  • Guillard RRL, Ryther JH (1962) Studies of marine phytoplanktonic diatoms. I. Cyclotella nana Hustedt and Detonula confervaceae (Cleve) Gran. Can J Microbiol 8:229–239

    Article  PubMed  CAS  Google Scholar 

  • Havaux M, Kloppstech K (2001) The protective functions of carotenoid and flavonoid pigments against excess visible radiation at chilling temperature investigated in Arabidopsis npq and tt mutants. Planta 213:953–966

    Article  CAS  Google Scholar 

  • Henley WJ (1993) Measurement and interpretation of photosynthetic light–response curves in algae in the context of photoinhibition and diel changes. J Phycol 29:729–739

    Article  Google Scholar 

  • Herlory O, Richard P, Blanchard GF (2007) Methodology of light response curves: application of chlorophyll fluorescence to microphytobenthic biofilms. Mar Biol 153:91–101

    Article  CAS  Google Scholar 

  • Horton P, Ruban AV, Wentworth M (2000) Allosteric regulation of the light-harvesting system of photosystem II. Philos Trans Royal Soc London Series B 355:1361–1370

    Article  CAS  Google Scholar 

  • Horton P, Johnson MP, Perez-Bueno ML, Kiss AZ, Ruban AV (2008) Photosynthetic acclimation: does the dynamic structure and macro-organisation of photosystem II in higher plant grana membranes regulate light harvesting states? FEBS J 275:1069–1079

    Article  PubMed  CAS  Google Scholar 

  • Jakob T, Goss R, Wilhelm C (1999) Activation of diadinoxanthin de-epoxidase due to a chlororespiratory proton gradient in the dark in the diatom Phaeodactylum tricornutum. Plant Biol 1:76–82

    Article  CAS  Google Scholar 

  • Johnson ML (2008) Nonlinear least-squares fitting methods. In: Correia J, Detrich H (eds) Methods in cell biology, vol 84. Elsevier Academic Press, San Diego, pp 781–805

    Google Scholar 

  • Jung H-S, Niyogi KK (2009) Quantitative genetic analysis of thermal dissipation in Arabidopsis. Plant Physiol 150:977–986

    Article  PubMed  CAS  Google Scholar 

  • Kromkamp JC, Dijkman NA, Peene J, Simis SGH, Gons HJ (2008) Estimating phytoplankton primary production in Lake IJsselmeer (The Netherlands) using variable fluorescence (PAM-FRRF) and C-uptake techniques. Eur J Phycol 43:327–344

    Article  CAS  Google Scholar 

  • Kropuenske LR, Mills MM, Dijken GL, Bailey S, Robinson DH, Welschmeyer NA, Arrigo KR (2009) Photophysiology in two major Southern Ocean phytoplankton taxa: photoprotection in Phaeocystis antarctica and Fragilariopsis cylindrus. Limnol Oceanogr 54:1176–1196

    Article  CAS  Google Scholar 

  • Krupenina NA, Bulychev AA (2007) Action potential in a plant cell lowers the light requirement for non-photochemical energy-dependent quenching of chlorophyll fluorescence. Biochim Biophys Acta 1767:781–788

    Article  PubMed  CAS  Google Scholar 

  • Lavaud J (2007) Fast regulation of photosynthesis in diatoms: mechanisms, evolution and ecophysiology. Funct Plant Sci Biotechnol 1:267–287

    Google Scholar 

  • Lavaud J, Kroth PG (2006) In diatoms, the transthylakoid proton gradient regulates the photoprotective non-photochemical fluorescence quenching beyond its control on the xanthophyll cycle. Plant Cell Physiol 47:1010–1016

    Article  PubMed  CAS  Google Scholar 

  • Lavaud J, Rousseau B, Gorkom HJ, Etienne A (2002) Influence of the diadinoxanthin pool size on photoprotection in the marine planktonic diatom. Plant Physiol 129:1398–1406

    Article  PubMed  CAS  Google Scholar 

  • Lavaud J, Rousseau B, Etienne AL (2004) General features of photoprotection by energy dissipation in planktonic diatoms (Bacillariophyceae). J Phycol 40:130–137

    Article  Google Scholar 

  • Lavaud J, Strzepek RF, Kroth PG (2007) Photoprotection capacity differs among diatoms: possible consequences on the spatial distribution of diatoms related to fluctuations in the underwater light climate. Limnol Oceanogr 52:1188–1194

    Article  CAS  Google Scholar 

  • Li X-P, Björkman O, Shih C, Grossman AR, Rosenquist M, Jansson S, Niyogi KK (2000) A pigment-binding protein essential for regulation of photosynthetic light harvesting. Nature 403:391–395

    Article  PubMed  CAS  Google Scholar 

  • Li Z, Wakao S, Fischer BB, Niyogi KK (2009) Sensing and responding to excess light. Annu Rev Plant Biol 60:239–260

    Article  PubMed  CAS  Google Scholar 

  • Lokstein H, Tian L, Polle JE, DellaPenna D (2002) Xanthophyll biosynthetic mutants of Arabidopsis thaliana: altered nonphotochemical quenching of chlorophyll fluorescence is due to changes in photosystem II antenna size and stability. Biochim Biophys Acta 1553:309–319

    Article  PubMed  CAS  Google Scholar 

  • Marschall M, Proctor MCF (2004) Are bryophytes shade plants? Photosynthetic light responses and proportions of chlorophyll a, chlorophyll b and total carotenoids. Ann Bot 94:593–603

    Article  PubMed  CAS  Google Scholar 

  • Mouget J-L, Tremblin G (2002) Suitability of the fluorescence monitoring system (FMS, Hansatech) for measurement of photosynthetic characteristics in algae. Aquat Bot 74:219–231

    Article  CAS  Google Scholar 

  • Müller P, Li X-P, Niyogi KK (2001) Non-photochemical quenching. A response to excess light energy. Plant Physiol 125:1558–1566

    Article  PubMed  Google Scholar 

  • Müller-Moulé P, Conklin PL, Niyogi KK (2002) Ascorbate deficiency can limit violaxanthin de-epoxidase activity in vivo. Plant Physiol 128:970–977

    Article  PubMed  Google Scholar 

  • Müller-Moulé P, Golan T, Niyogi KK (2004) Ascorbate-deficient mutants of Arabidopsis grow in high light despite chronic photooxidative stress. Plant Physiol 134:1163–1172

    Article  PubMed  Google Scholar 

  • Mullineaux CW, Emlyn-Jones D (2005) State transitions: an example of acclimation to low-light stress. J Exp Bot 56:389–393

    Article  PubMed  CAS  Google Scholar 

  • Munekage Y, Hojo M, Meurer J, Endo T, Tasaka M, Shikanai T (2002) PGR5 is involved in cyclic electron flow around photosystem I and is essential for photoprotection in Arabidopsis. Cell 110:361–371

    Article  PubMed  CAS  Google Scholar 

  • Munshi MK, Kobayashi Y, Shikanai T (2006) Chlororespiratory reduction 6 is a novel factor required for accumulation of the chloroplast NAD(P)H dehydrogenase complex in Arabidopsis. Plant Physiol 141:737–744

    Article  PubMed  CAS  Google Scholar 

  • Niyogi KK, Grossman AR, Björkman O (1998) Arabidopsis mutants define a central role for the xanthophyll cycle in the regulation of photosynthetic energy conversion. Plant Cell 10:1121–1134

    Article  PubMed  CAS  Google Scholar 

  • Olaizola M, Yamamoto HY (1994) Short-term response of the diadinoxanthin cycle and fluorescence yield to high irradiance in Chaetoceros muelleri (Bacillariophyceae). J Phycol 30:606–612

    Article  CAS  Google Scholar 

  • Ort DR (2001) When there is too much light. Plant Physiol 125:29–32

    Article  PubMed  CAS  Google Scholar 

  • Osmond B, Badger M, Maxwell K, Björkman O, Leegood R (1997) Too many photons: photorespiration, photoinhibition and photooxidation. Trends Plant Sci 2:119–121

    Article  Google Scholar 

  • Peers G, Truong TB, Ostendor E, Busch A, Elrad D, Grossman AR, Hippler M, Niyogi KK (2009) An ancient light-harvesting protein is critical for the regulation of algal photosynthesis. Nature 462:518–522

    Article  PubMed  CAS  Google Scholar 

  • Pérez-Bueno ML, Johnson MP, Zia A, Ruban AV, Horton P (2008) The Lhcb protein and xanthophyll composition of the light harvesting antenna controls the ΔpH-dependency of non-photochemical quenching in Arabidopsis thaliana. FEBS Lett 582:1477–1482

    Article  PubMed  Google Scholar 

  • Perkins RG, Mouget J-L, Lefebvre S, Lavaud J (2006) Light response curve methodology and possible implications in the application of chlorophyll fluorescence to benthic diatoms. Mar Biol 149:703–712

    Article  Google Scholar 

  • Perkins RG, Kromkamp J, Serôdio J, Lavaud J, Jesus B, Mouget J-L, Forster R, Lefebvre S (2010) The application of variable chlorophyll fluorescence to microphytobenthic biofilms. In: Suggett D, Prasil O, Borowitza MA (eds) Chlorophyll a fluorescence in aquatic sciences: methods and applications. Developments in applied phycology, 4th edn. Springer, Dordrecht, pp 273–275

    Google Scholar 

  • Pfannschmidt T (2005) Acclimation to varying light qualities: toward the functional relationship of state transitions and adjustment of photosystem stoichiometry. J Phycol 41:723–725

    Article  Google Scholar 

  • Pfündel EE, Dilley RA (1993) The pH dependence of violaxanthin deepoxidation in isolated pea chloroplasts. Plant Physiol 101:65–71

    PubMed  Google Scholar 

  • Press WH, Teukolsky S, Vetterling W, Flannery B (1996) Numerical recipes in Fortran 90. The art of parallel scientific computing, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Ralph PJ, Gademann R (2005) Rapid light curves: a powerful tool to assess photosynthetic activity. Aquat Bot 82:222–237

    Article  CAS  Google Scholar 

  • Ralph PJ, Gademann R, Larkum AW (2001) Zooxanthellae expelled from bleached corals at 33°C are photosynthetically competent. Mar Ecol Prog Ser 220:163–168

    Article  CAS  Google Scholar 

  • Ritchie RJ (2008) Fitting light saturation curves measured using modulated fluorometry. Photosynth Res 96:201–215

    Article  PubMed  CAS  Google Scholar 

  • Rodríguez-Calcerrada J, Pardos JA, Gil L, Aranda I (2007) Acclimation to light in seedlings of Quercus petraea (Mattuschka) Liebl. and Quercus pyrenaica Willd. planted along a forest-edge gradient. Trees 21:45–54

    Article  Google Scholar 

  • Ruban AV, Johnson MP (2009) Dynamics of higher plant photosystem cross-section associated with state transitions. Photosynth Res 99:173–183

    Article  PubMed  CAS  Google Scholar 

  • Ruban AV, Wentworth M, Horton P (2001) Kinetic analysis of nonphotochemical quenching of chlorophyll fluorescence. 1. Isolated chloroplasts. Biochemistry 40:9896–9901

    Article  PubMed  CAS  Google Scholar 

  • Serôdio J, Vieira S, Cruz S, Coelho H (2006) Rapid light–response curves of chlorophyll fluorescence in microalgae: relationship to steady-state light curves and non-photochemical quenching in benthic diatom-dominated assemblages. Photosynth Res 90:29–43

    Article  PubMed  Google Scholar 

  • Takizawa K, Cruz JA, Kanazawa A, Kramer DM (2007) The thylakoid proton motive force in vivo. Quantitative, noninvasive probes, energetics, and regulatory consequences of light-induced pmf. Biochim Biophys Acta 1767:1233–1244

    Article  PubMed  CAS  Google Scholar 

  • Tellinghuisen J (2008) Stupid statistics!. In: Correia J, Detrich H (eds) Methods in cell biology, vol 84. Elsevier Academic Press, San Diego, pp 739–780

    Google Scholar 

  • Tikkanen M, Pippo M, Suorsa M, Sirpio S, Mulo P, Vainonen J, Vener A, Allahverdiyeva Y, Aro EM (2006) State transitions revisited: a buffering system for dynamic low light acclimation of Arabidopsis. Plant Molec Biol 62:779–793

    Article  Google Scholar 

  • Voet D, Voet JG (1990) Biochemistry. John Wiley and Sons, New York

    Google Scholar 

Download references

Acknowledgments

We thank Glória Pinto, Eleazar Rodriguez, and Armando Costa for helping with the seeding of the Arabidopsis plants. This study was supported by FCT—Fundação para a Ciência e a Tecnologia, grant SFRH/BSAB/962/2009 to J. Serôdio, by the French consortium CPER-Littoral to J. Lavaud, and by the CNRS—Centre National de la Recherche Scientifique (programme ‘chercheurs invités’) to both. We thank two anonymous reviewers for critical comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João Serôdio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Serôdio, J., Lavaud, J. A model for describing the light response of the nonphotochemical quenching of chlorophyll fluorescence. Photosynth Res 108, 61–76 (2011). https://doi.org/10.1007/s11120-011-9654-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-011-9654-0

Keyword index

Navigation