Skip to main content
Log in

A model of the protein–pigment baseplate complex in chlorosomes of photosynthetic green bacteria

  • Review
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

In contrast to photosynthetic reaction centers, which share the same structural architecture, more variety is found in the light-harvesting antenna systems of phototrophic organisms. The largest antenna system described, so far, is the chlorosome found in anoxygenic green bacteria, as well as in a recently discovered aerobic phototroph. Chlorosomes are the only antenna system, in which the major light-harvesting pigments are organized in self-assembled supramolecular aggregates rather than on protein scaffolds. This unique feature is believed to explain why some green bacteria are able to carry out photosynthesis at very low light intensities. Encasing the chlorosome pigments is a protein-lipid monolayer including an additional antenna complex: the baseplate, a two-dimensional paracrystalline structure containing the chlorosome protein CsmA and bacteriochlorophyll a (BChl a). In this article, we review current knowledge of the baseplate antenna complex, which physically and functionally connects the chlorosome pigments to the reaction centers via the Fenna–Matthews–Olson protein, with special emphasis on the well-studied green sulfur bacterium Chlorobaculum tepidum (previously Chlorobium tepidum). A possible role for the baseplate in the biogenesis of chlorosomes is discussed. In the final part, we present a structural model of the baseplate through combination of a recent NMR structure of CsmA and simulation of circular dichroism and optical spectra for the CsmA–BChl a complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adolphs J, Renger T (2006) How proteins trigger excitation energy transfer in the FMO complex of green sulfur bacteria. Biophys J 91:2778–2797. doi:10.1529/biophysj.105.079483

    Article  CAS  PubMed  Google Scholar 

  • Arellano JB, Psencik J, Borrego CM et al (2000) Effect of carotenoid biosynthesis inhibition on the chlorosome organization in Chlorobium phaeobacteroides strain CL1401. Photochem Photobiol 71:715–723. doi:10.1562/0031-8655(2000)0710715EOCBIO2.0.CO2

    Article  CAS  PubMed  Google Scholar 

  • Armstrong D, Zidovetzki R (2001) Wheel.Pl. http://rzlab.Ucr.Edu/scripts/wheel/wheel.Cgi

  • Beatty JT, Overmann J, Lince MT et al (2005) An obligately photosynthetic bacterial anaerobe from a deep-sea hydrothermal vent. PNAS 102:9306–9310. doi:10.1073/pnas.0503674102

    Article  CAS  PubMed  Google Scholar 

  • Ben-Shem A, Frolow F, Nelson N (2004) Evolution of photosystem I—from symmetry through pseudo-symmetry to asymmetry. FEBS Lett 564:274–280. doi:10.1016/S0014-5793(04)00360-6

    Article  CAS  PubMed  Google Scholar 

  • Betti JA, Blankenship RE, Natarajan LV et al (1982) Antenna organization and evidence for the function of a new antenna pigment species in the green photosynthetic bacterium Chloroflexus aurantiacus. Biochim Biophys Acta 680:194–201. doi:10.1016/0005-2728(82)90011-1

    Article  CAS  Google Scholar 

  • Blankenship RE, Matsuura K (2003) Antenna complexes from green photosynthetic bacteria. In: Green BR, Parson WW (eds) Light-harvesting antennas in photosynthesis. Kluwer, Dordrecht, The Netherlands

    Google Scholar 

  • Bryant DA, Vassilieva EV, Frigaard NU et al (2002) Selective protein extraction from Chlorobium tepidum chlorosomes using detergents. Evidence that CsmA forms multimers and binds bacteriochlorophyll a. Biochemistry 41:14403–14411. doi:10.1021/bi026599s

    Article  CAS  PubMed  Google Scholar 

  • Bryant DA, Costas AM, Maresca JA et al (2007) “Candidatus Chloracidobacterium thermophilum”: an aerobic phototrophic acidobacterium. Science 317:523–526. doi:10.1126/science.1143236

    Article  CAS  PubMed  Google Scholar 

  • Camara-Artigas A, Blankenship RE, Allen JP (2003) The structure of the FMO protein from Chlorobium tepidum at 2.2 angstrom resolution. Photosynth Res 75:49–55. doi: 10.1023/A:1022406703110

    Google Scholar 

  • Chung S, Bryant DA (1996) Characterization of the csmD and csmE genes from Chlorobium tepidum. The CsmA, CsmC, CsmD, and CsmE proteins are components of the chlorosome envelope. Photosynth Res 50:41–59. doi:10.1007/BF00018220

    Article  CAS  Google Scholar 

  • Chung S, Frank G, Zuber H et al (1994) Genes encoding 2 chlorosome components from the green sulfur bacteria Chlorobium vibrioforme strain 83271d and Chlorobium tepidum. Photosynth Res 41:261–275. doi:10.1007/BF02184167

    Article  CAS  Google Scholar 

  • Chung S, Shen G, Ormerod J et al (1998) Insertional inactivation studies of the csmA and csmC genes of the green sulfur bacterium Chlorobium vibrioforme 8327: the chlorosome protein CsmA is required for viability but CsmC is dispensable. FEMS Microbiol Lett 164:353–361. doi:10.1111/j.1574-6968.1998.tb13109.x

    Article  CAS  PubMed  Google Scholar 

  • Cogdell RJ, Gardiner AT, Roszak AW et al (2004) Rings, ellipses and horseshoes: how purple bacteria harvest solar energy. Photosynth Res 81:207–214. doi:10.1023/B:PRES.0000036883.56959.a9

    Article  CAS  PubMed  Google Scholar 

  • DeLano WL (2002) The pymol molecular graphics system. DeLano Scientific, Palo Alto

    Google Scholar 

  • Feick RG, Fuller RC (1984) Topography of the photosynthetic apparatus of Chloroflexus aurantiacus. Biochemistry 23:3693–3700. doi:10.1021/bi00311a019

    Article  CAS  Google Scholar 

  • Foidl M, Golecki JR, Oelze J (1998) Chlorosome development in Chloroflexus aurantiacus. Photosynth Res 55:109–114. doi:10.1007/BF02184154

    Article  CAS  Google Scholar 

  • Frigaard N-U, Bryant D (2006) Chlorosomes: antenna organelles in green photosynthetic bacteria. In: Shively JM (ed) Complex intracellular structures in prokaryotes, microbiology monographs, vol 2. Springer, Berlin

    Chapter  Google Scholar 

  • Frigaard NU, Chew AGM, Li H et al (2003) Chlorobium tepidum: insights into the structure, physiology, and metabolism of a green sulfur bacterium derived from the complete genome sequence. Photosynth Res 78:93–117. doi:10.1023/B:PRES.0000004310.96189.b4

    Article  CAS  PubMed  Google Scholar 

  • Frigaard N-U, Sakuragi Y, Bryant DA (2004a) Gene inactivation in the cyanobacterium Synechococcus sp. PCC 7002 and the green sulfur bacterium Chlorobium tepidum using in vitro-made DNA constructs and natural transformation. In: Carpentier R (ed) Methods in molecular biology (photosynthesis research protocols). Humana Press, Totowa

    Google Scholar 

  • Frigaard NU, Li H, Milks KJ et al (2004b) Nine mutants of Chlorobium tepidum each unable to synthesize a different chlorosome protein still assemble functional chlorosomes. J Bacteriol 186:646–653. doi:10.1128/JB.186.3.646-653.2004

    Article  CAS  PubMed  Google Scholar 

  • Frigaard NU, Li H, Martinsson P et al (2005) Isolation and characterization of carotenosomes from a bacteriochlorophyll c-less mutant of Chlorobium tepidum. Photosynth Res 86:101–111. doi:10.1007/s11120-005-1331-8

    Article  CAS  PubMed  Google Scholar 

  • Fuller RC (1999) Microbial inclusions with special reference to PHA inclusions and intracellular boundary envelopes. Int J Biol Macromol 25:21–29. doi:10.1016/S0141-8130(99)00011-2

    Article  CAS  PubMed  Google Scholar 

  • Ganapathy S, Oostergetel GT, Wawrzyniak PK et al (2009) Alternating syn-anti bacteriochlorophylls form concentric helical nanotubes in chlorosomes. PNAS 106:8525–8530. doi:10.1073/pnas.0903534106

    Article  CAS  PubMed  Google Scholar 

  • Gerola PD, Olson JM (1986) A new bacteriochlorophyll a-protein complex associated with chlorosomes of green sulfur bacteria. Biochim Biophys Acta 848:69–76. doi:10.1016/0005-2728(86)90161-1

    Article  CAS  PubMed  Google Scholar 

  • Hohmann-Marriott MF, Blankenship RE (2007) Hypothesis on chlorosome biogenesis in green photosynthetic bacteria. FEBS Lett 581:800–803. doi:10.1016/j.febslet.2007.01.078

    Article  CAS  PubMed  Google Scholar 

  • Holo H, Brochdue M, Ormerod JG (1985) Glycolipids and the structure of chlorosomes in green bacteria. Arch Microbiol 143:94–99. doi:10.1007/BF00414775

    Article  CAS  Google Scholar 

  • Holzwarth AR, Schaffner K (1994) On the structure of bacteriochlorophyll molecular aggregates in the chlorosomes of green bacteria: a molecular modeling study. Photosynth Res 41:225–233. doi:10.1007/BF02184163

    Article  CAS  Google Scholar 

  • Ikonen TP, Li H, Psencik J et al (2007) X-ray scattering and electron cryomicroscopy study on the effect of carotenoid biosynthesis to the structure of Chlorobium tepidum chlorosomes. Biophys J 93:620–628. doi:10.1529/biophysj.106.101444

    Article  CAS  PubMed  Google Scholar 

  • Li H, Bryant DA (2009) Envelope proteins of the CsmB/CsmF and CsmC/CsmD motif families influence the size, shape and composition of chlorosomes in Chlorobaculum tepidum. J Bacteriol [Epub ahead of print]. doi: 10.1128/JB.00707-09

  • Li YF, Zhou WL, Blankenship RE et al (1997) Crystal structure of the bacteriochlorophyll a protein from Chlorobium tepidum. J Mol Biol 271:456–471. doi:10.1006/jmbi.1997.1189

    Article  CAS  PubMed  Google Scholar 

  • Li H, Frigaard NU, Bryant DA (2006) Molecular contacts for chlorosome envelope proteins revealed by cross-linking studies with chlorosomes from Chlorobium tepidum. Biochemistry 45:9095–9103. doi:10.1021/Bi060776y

    Article  CAS  PubMed  Google Scholar 

  • Linnanto J, Korppi-Tommopa JEI, Helenius VM (1999) Electronic states, absorption spectrum and circular dichroism spectrum of the photosynthetic bacterial LH2 antenna of Rhodopseudomonas acidophila as predicted by exciton theory and semiempirical calculations. J Phys Chem B 103:8739–8750

    Article  CAS  Google Scholar 

  • Manske AK, Glaeser J, Kuypers MMM et al (2005) Physiology and phylogeny of green sulfur bacteria forming a monospecific phototrophic assemblage at a depth of 100 meters in the black sea. Appl Environ Microbiol 71:8049–8060. doi:10.1128/AEM.71.12.8049-8060.2005

    Article  CAS  PubMed  Google Scholar 

  • Matthews BW, Fenna RE, Bolognesi MC et al (1979) Structure of a bacteriochlorophyll a-protein from the green photosynthetic bacterium Prosthecochloris aestuarii. J Mol Biol 131:259–285. doi:10.1016/0022-2836(79)90076-7

    Article  CAS  PubMed  Google Scholar 

  • Melø TB, Frigaard N-U, Matsuura K et al (2000) Electronic energy transfer involving carotenoid pigments in chlorosomes of two green bacteria: Chlorobium tepidum and Chloroflexus aurantiacus. Spectrochim Acta A 56:2001–2010. doi:10.1016/S1386-1425(00)00289-4

    Article  Google Scholar 

  • Milks KJ, Danielsen M, Persson S et al (2005) Chlorosome proteins studied by MALDI-TOF-MS: topology of CsmA in Chlorobium tepidum. Photosynth Res 86:113–121. doi:10.1007/s11120-005-3757-4

    Article  CAS  PubMed  Google Scholar 

  • Montaño GA, Wu HM, Lin S et al (2003) Isolation and characterization of the B798 light-harvesting baseplate from the chlorosomes of Chloroflexus aurantiacus. Biochemistry 42:10246–10251. doi:10.1021/bi034350k

    Article  PubMed  Google Scholar 

  • Oelze J, Golecki JR (1995) Membranes and chlorosomes of green bacteria: structure, composition and development. In: Blankenship RE, Madigan MT, Bauer CE (eds) Anoxygenic photosynthetic bacteria. Kluwer, Dordrecht, The Netherlands

    Google Scholar 

  • Olsen JD, Sockalingum GD, Robert B et al (1994) Modification of a hydrogen-bond to a bacteriochlorophyll a molecule in the light-harvesting 1-antenna of Rhodobacter sphaeroides. PNAS 91:7124–7128

    Article  CAS  PubMed  Google Scholar 

  • Pedersen MØ, Borch J, Højrup P et al (2006) The light-harvesting antenna of Chlorobium tepidum: interactions between the FMO protein and the major chlorosome protein CsmA studied by surface plasmon resonance. Photosynth Res 89:63–69. doi:10.1007/s11120-006-9081-9

    Article  PubMed  Google Scholar 

  • Pedersen MØ, Pham L, Steensgaard DB et al (2008a) A reconstituted light-harvesting complex from the green sulfur bacterium Chlorobium tepidum containing CsmA and bacteriochlorophyll a. Biochemistry 47:1435–1441. doi:10.1021/Bi701616r

    Article  CAS  PubMed  Google Scholar 

  • Pedersen MØ, Underhaug J, Dittmer J et al (2008b) The three-dimensional structure of CsmA: a small antenna protein from the green sulfur bacterium Chlorobium tepidum. FEBS Lett 582:2869–2874. doi:10.1016/j.febslet.2008.07.020

    Article  CAS  PubMed  Google Scholar 

  • Ponder JW (2004) TINKER: software tools for molecular design. Washington University School of Medicine, Saint Louis

    Google Scholar 

  • Psencik J, Ikonen TP, Laurinmaki P et al (2004) Lamellar organization of pigments in chlorosomes, the light harvesting complexes of green photosynthetic bacteria. Biophys J 87:1165–1172. doi:10.1529/biophysj.104.040956

    Article  CAS  PubMed  Google Scholar 

  • Pšenčík J, Collins AM, Liljeroos L et al (2009) Structure of chlorosomes from the green filamentous bacterium Chloroflexus aurantiacus. J Bacteriol [Epub ahead of print]. doi:10.1128/JB.00690-09

  • Sakuragi Y, Frigaard NU, Shimada K et al (1999) Association of bacteriochlorophyll a with the CsmA protein in chlorosomes of the photosynthetic green filamentous bacterium Chloroflexus aurantiacus. BBA-Bioenergetics 1413:172–180. doi:10.1016/S0005-2728(99)00092-4

    Article  CAS  PubMed  Google Scholar 

  • Schmidt K (1980) Comparative-study on the composition of chlorosomes (Chlorobium vesicles) and cytoplasmic membranes from Chloroflexus aurantiacus strain-ok-70-fl and Chlorobium limicola f thiosulfatophilum strain-6230. Arch Microbiol 124:21–31. doi:10.1007/BF00407024

    Article  CAS  Google Scholar 

  • Shibata Y, Saga Y, Tamiaki H et al (2007) Polarized fluorescence of aggregated bacteriochlorophyll c and baseplate bacteriochlorophyll a in single chlorosomes isolated from Chloroflexus aurantiacus. Biochemistry 46:7062–7068. doi:10.1021/bi0623072

    Article  CAS  PubMed  Google Scholar 

  • Shibata Y, Saga Y, Tamiaki H et al (2009) Anisotropic distribution of emitting transition dipoles in chlorosome from Chlorobium tepidum: fluorescence polarization anisotropy study of single chlorosomes. Photosynth Res 100:67–78. doi:10.1007/s11120-009-9429-z

    Article  CAS  PubMed  Google Scholar 

  • Sørensen PG, Cox RP, Miller M (2008) Chlorosome lipids from Chlorobium tepidum: characterization and quantification of polar lipids and wax esters. Photosynth Res 95:191–196. doi:10.1007/s11120-007-9242-5

    Article  PubMed  Google Scholar 

  • Staehelin LA, Golecki JR, Drews G (1980) Supramolecular organization of chlorosomes (Chlorobium vesicles) and of their membrane attachment sites in Chlorobium limicola. Biochim Biophys Acta 589:30–45. doi:10.1016/0005-2728(80)90130-9

    Article  CAS  PubMed  Google Scholar 

  • Sturgis JN, Olsen JD, Robert B et al (1997) Functions of conserved tryptophan residues of the core light-harvesting complex of Rhodobacter sphaeroides. Biochemistry 36:2772–2778. doi:10.1021/bi962524a

    Article  CAS  PubMed  Google Scholar 

  • Tronrud DE, Schmid MF, Matthews BW (1986) Structure and X-ray amino-acid-sequence of a bacteriochlorophyll a protein from Prosthecochloris aestuarii refined at 1.9 Å resolution. J Mol Biol 188:443–454. doi:10.1016/0022-2836(86)90167-1

    Article  CAS  PubMed  Google Scholar 

  • Tronrud DE, Wen JZ, Gay L et al (2009) The structural basis for the difference in absorbance spectra for the FMO antenna protein from various green sulfur bacteria. Photosynth Res 100:79–87. doi:10.1007/s11120-009-9430-6

    Article  CAS  PubMed  Google Scholar 

  • van Dorssen RJ, Gerola PD, Olson JM et al (1986) Optical and structural-properties of chlorosomes of the photosynthetic green sulfur bacterium Chlorobium limicola. Biochim Biophys Acta 848:77–82. doi:10.1016/0005-2728(86)90162-3

    Article  Google Scholar 

  • van Noort PI, Francke C, Schoumans N et al (1994) Chlorosomes of green sulfur bacteria: pigment composition and energy-transfer. Photosynth Res 41:193–203. doi:10.1007/BF02184160

    Article  Google Scholar 

  • Vassilieva EV, Stirewalt VL, Jakobs CU et al (2002) Subcellular localization of chlorosome proteins in Chlorobium tepidum and characterization of three new chlorosome proteins: CsmF, CsmH, and CsmX. Biochemistry 41:4358–4370. doi:10.1021/bi012051u

    Article  CAS  PubMed  Google Scholar 

  • Wen JZ, Zhang H, Gross ML et al (2009) Membrane orientation of the FMO antenna protein from Chlorobaculum tepidum as determined by mass spectrometry-based footprinting. PNAS 106:6134–6139. doi:10.1073/pnas.0901691106

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr R. P. Cox for critical reading of the manuscript. This study was supported by the Danish National Research Foundation by grants to NCN, NUF, and MM. Support from Academy of Finland (contract No. 123801) is acknowledged by JL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mette Miller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pedersen, M.Ø., Linnanto, J., Frigaard, NU. et al. A model of the protein–pigment baseplate complex in chlorosomes of photosynthetic green bacteria. Photosynth Res 104, 233–243 (2010). https://doi.org/10.1007/s11120-009-9519-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-009-9519-y

Keywords

Navigation