Skip to main content
Log in

Heme oxygenase 2 of the cyanobacterium Synechocystis sp. PCC 6803 is induced under a microaerobic atmosphere and is required for microaerobic growth at high light intensity

  • Regular Paper
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Cyanobacteria, red algae, and cryptomonad algae utilize phycobilin chromophores that are attached to phycobiliproteins to harvest solar energy. Heme oxygenase (HO) in these organisms catalyzes the first step in phycobilin formation through the conversion of heme to biliverdin IXα, CO, and iron. The Synechocystis sp. PCC 6803 genome contains two open reading frames, ho1 (sll1184) and ho2 (sll1875), whose products have in vitro HO activity. We report that HO2, the protein encoded by ho2, was induced in the cells growing under a microaerobic atmosphere [0.2% (v/v) O2], whereas HO1 was constitutively expressed under both aerobic and microaerobic atmospheres. Light intensity did not have an effect on the expression of both the HOs. Cells, in which ho2 was disrupted, were unable to grow microaerobically at a light intensity of 40 μmol m−2 s−1, but did grow microaerobically at 10 μmol m−2 s−1 light intensity. These cells grew normally aerobically at both light intensities. Comparative analysis of complete cyanobacterial genomes revealed that possession of two HOs is common in cyanobacteria. In phylogenetic analysis of their amino acid sequences, cyanobacterial HO1 and HO2 homologs formed distinct clades. HO sequences of cyanobacteria that have only one isoform were most similar to HO1 sequences. We propose that HO2 might be the more ancient HO homolog that functioned under low O2 tension, whereas the derived HO1 can better accommodate increased O2 tension in the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Anisimova M, Gascuel O (2006) Approximate likelihood-ratio test for branches: a fast, accurate, and powerful alternative. Syst Biol 55:539–552

    Article  PubMed  Google Scholar 

  • Battistuzzi FU, Feijao A, Hedges SB (2004) A genomic timescale of prokaryote evolution: insights into the origin of methanogenesis, phototrophy, and the colonization of land. BMC Evol Biol 4:14

    Article  Google Scholar 

  • Beale SI (1993) Biosynthesis of phycobilins. Chem Rev 93:785–802

    Article  CAS  Google Scholar 

  • Beale SI (2008a) Biosynthesis of chlorophylls and hemes. In: Harris L, Stern DB, Witman G (eds) The chlamydomonas sourcebook, vol 2, 2nd edn. Elsevier, Dordrecht, pp 731–798

    Google Scholar 

  • Beale SI (2008b) Photosynthetic pigments: perplexing persistent prevalence of ‘Superfluous’ pigment production. Curr Biol 18:R342–R343

    Article  CAS  PubMed  Google Scholar 

  • Bruggemann H, Bauer R, Raffestin S, Gottschalk G (2004) Characterization of a heme oxygenase of Clostridium tetani and its possible role in oxygen tolerance. Arch Microbiol 182:259–263

    Article  PubMed  Google Scholar 

  • Cornejo J, Beale SI (1997) Phycobilin biosynthetic reactions in extracts of cyanobacteria. Photosynth Res 51:223–230

    Article  CAS  Google Scholar 

  • Cornejo J, Willows RD, Beale SI (1998) Phytobilin biosynthesis: cloning and expression of a gene encoding soluble ferredoxin-dependent heme oxygenase from Synechocystis sp. PCC 6803. Plant J 15:99–107

    Article  CAS  PubMed  Google Scholar 

  • Dore S, Takahashi M, Ferris CD, Zakhary R, Hester LD, Guastella D, Snyder SH (1999) Bilirubin, formed by activation of heme oxygenase-2, protects neurons against oxidative stress injury. Proc Natl Acad Sci USA 96:2445–2450

    Article  CAS  PubMed  Google Scholar 

  • Glazer AN (1988) Phycobiliproteins. Methods Enzymol 167:291–303

    Article  CAS  PubMed  Google Scholar 

  • Gray MW (1989) The evolutionary origins of organelles. Trends Genet 5:294–299

    Article  CAS  PubMed  Google Scholar 

  • Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704

    Article  PubMed  Google Scholar 

  • Howitt CA, Cooley JW, Wiskich JT, Vermaas WFJ (2001) A strain of Synechocystis sp. PCC 6803 without photosynthetic oxygen evolution and respiratory oxygen consumption: implications for the study of cyclic photosynthetic electron transport. Planta 214:46–56

    Article  CAS  PubMed  Google Scholar 

  • Lascelles J, Hatch TP (1969) Bacteriochlorophyll and heme synthesis in Rhodopseudomonas spheroides—possible role of heme in regulation of branched biosynthetic pathway. J Bacteriol 98:712–720

    CAS  PubMed  Google Scholar 

  • Le SQ, Gascuel O (2008) An improved general amino acid replacement matrix. Mol Biol Evol 25:1307–1320

    Article  CAS  PubMed  Google Scholar 

  • MacColl R (1998) Cyanobacterial phycobilisomes. J Struct Biol 124:311–334

    Article  CAS  PubMed  Google Scholar 

  • Migita CT, Zhang X, Yoshida T (2003) Expression and characterization of cyanobacterium heme oxygenase, a key enzyme in the phycobilin synthesis. Properties of the heme complex of recombinant active enzyme. Eur J Biochem 270:687–698

    Article  CAS  PubMed  Google Scholar 

  • Minamizaki K, Mizoguchi T, Goto T, Tamiaki H, Fujita Y (2008) Identification of two homologous genes, chlA I and chlA (II) , that are differentially involved in isocyclic ring formation of chlorophyll a in the cyanobacterium Synechocystis sp. PCC 6803. J Biol Chem 283:2684–2692

    Article  CAS  PubMed  Google Scholar 

  • Montgomery BL, Lagarias JC (2002) Phytochrome ancestry: sensors of bilins and light. Trends Plant Sci 7:357–366

    Article  CAS  PubMed  Google Scholar 

  • Mulkidjanian AY, Koonin EV, Makarova KS, Mekhedov SL, Sorokin A, Wolf YI, Dufresne A, Partensky F, Burd H, Kaznadzey D, Haselkorn R, Galperin MY (2006) The cyanobacterial genome core and the origin of photosynthesis. Proc Natl Acad Sci USA 103:13126–13131

    Article  CAS  PubMed  Google Scholar 

  • Nowack ECM, Melkonian M, Glockner G (2008) Chromatophore genome sequence of Paulinella sheds light on acquisition of photosynthesis by eukaryotes. Curr Biol 18:410–418

    Article  CAS  PubMed  Google Scholar 

  • Puri S, O’Brian MR (2006) The hmuQ and hmuD genes from Bradyrhizobium japonicum encode heme-degrading enzymes. J Bacteriol 188:6476–6482

    Article  CAS  PubMed  Google Scholar 

  • Ratliff M, Zhu W, Deshmukh R, Wilks A, Stojiljkovic I (2001) Homologues of neisserial heme oxygenase in gram-negative bacteria: degradation of heme by the product of the pigA gene of Pseudomonas aeruginosa. J Bacteriol 183:6394–6403

    Article  CAS  PubMed  Google Scholar 

  • Rieble S, Beale SI (1988) Transformation of glutamate to delta-aminolevulinic-acid by soluble extracts of Synechocystis sp. PCC 6803 and other oxygenic prokaryotes. J Biol Chem 263:8864–8871

    CAS  PubMed  Google Scholar 

  • Rieble S, Beale SI (1991) Purification of glutamyl-tRNA reductase from Synechocystis sp. PCC 6803. J Biol Chem 266:9740–9745

    CAS  PubMed  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, NY

    Google Scholar 

  • Schmitt MP (1997) Utilization of host iron sources by Corynebacterium diphtheriae: identification of a gene whose product is homologous to eukaryotic heme oxygenases and is required for acquisition of iron from heme and hemoglobin. J Bacteriol 179:838–845

    CAS  PubMed  Google Scholar 

  • Schrautemeier B, Neveling U, Schmitz S (1995) Distinct and differently regulated Mo-dependent nitrogen-fixing systems evolved for heterocysts and vegetative cells of Anabaena variabilis ATCC 29413—characterization of the fdxh1/2 gene regions as part of the nif1/2 gene clusters. Mol Microbiol 18:357–369

    Article  CAS  PubMed  Google Scholar 

  • Serebryakova L, Novichkova N, Gogotov I (2002) Facultative H2-dependent anoxygenic photosynthesis in the unicellular cyanobacterium Gloeocapsa alpicola CALU 743. Int J Photoenergy 4:169–173

    Article  CAS  Google Scholar 

  • Sicora CI, Ho FM, Salminen T, Styring S, Aro EM (2009) Transcription of a “silent” cyanobacterial psbA gene is induced by microaerobic conditions. Biochim Biophys Acta Bioenerg 1787:105–112

    Article  CAS  Google Scholar 

  • Skaar EP, Gaspar AH, Schneewind O (2004) IsdG and IsdI, heme-degrading enzymes in the cytoplasm of Staphylococcus aureus. J Biol Chem 279:436–443

    Article  CAS  PubMed  Google Scholar 

  • Stal LJ, Moezelaar R (1997) Fermentation in cyanobacteria. FEMS Microbiol Rev 21:179–211

    CAS  Google Scholar 

  • Stanier RY, Kunisawa R, Mandel M, Cohen-Bazire G (1971) Purification and properties of unicellular blue-green algae (order chroococcales). Bacteriol Rev 35:171–205

    CAS  PubMed  Google Scholar 

  • Sugishima M, Migita CT, Zhang X, Yoshida T, Fukuyama K (2004) Crystal structure of heme oxygenase-1 from cyanobacterium Synechocystis sp. PCC 6803 in complex with heme. Eur J Biochem 271:4517–4525

    Article  CAS  PubMed  Google Scholar 

  • Sugishima M, Hagiwara Y, Zhang X, Yoshida T, Migita CT, Fukuyama K (2005) Crystal structure of dimeric heme oxygenase-2 from Synechocystis sp. PCC 6803 in complex with heme. Biochemistry 44:4257–4266

    Article  CAS  PubMed  Google Scholar 

  • Summerfield TC, Toepel J Jr, Sherman LA (2008) Low-oxygen induction of normally cryptic psbA genes in cyanobacteria. Biochemistry 47:12939–12941

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  CAS  PubMed  Google Scholar 

  • Terry MJ, Linley PJ, Kohchi T (2002) Making light of it: the role of plant haem oxygenases in phytochrome chromophore synthesis. Biochem Soc Trans 30:604–609

    Article  PubMed  Google Scholar 

  • Thiel T, Lyons EM, Erker JC, Ernst A (1995) A 2nd nitrogenase in vegetative cells of a heterocyst-forming cyanobacterium. Proc Natl Acad Sci USA 92:9358–9362

    Article  CAS  PubMed  Google Scholar 

  • Thiel T, Lyons EM, Erker JC (1997) Characterization of genes for a second Mo-dependent nitrogenase in the cyanobacterium Anabaena variabilis. J Bacteriol 179:5222–5225

    CAS  PubMed  Google Scholar 

  • Unno M, Matsui T, Ikeda-Saito M (2007) Structure and catalytic mechanism of heme oxygenase. Nat Prod Rep 24:553–570

    Article  CAS  PubMed  Google Scholar 

  • Verma A, Hirsch DJ, Glatt CE, Ronnett GV, Snyder SH (1993) Carbon monoxide: a putative neural messenger. Science 259:381–384

    Article  CAS  PubMed  Google Scholar 

  • Wegele R, Tasler R, Zeng Y, Rivera M, Frankenberg-Dinkel N (2004) The heme oxygenase(s)-phytochrome system of Pseudomonas aeruginosa. J Biol Chem 279:45791–45802

    Article  CAS  PubMed  Google Scholar 

  • Wilks A, Schmitt MP (1998) Expression and characterization of a heme oxygenase (Hmu O) from Corynebacterium diphtheriae. Iron acquisition requires oxidative cleavage of the heme macrocycle. J Biol Chem 273:837–841

    Article  CAS  PubMed  Google Scholar 

  • Williams JGK (1988) Construction of specific mutations in photosystem II photosynthetic reaction center by genetic engineering methods in Synechocystis 6803. Methods Enzymol 167:766–778

    Article  CAS  Google Scholar 

  • Yamamoto Y, Aminaka R, Yoshioka M, Khatoon M, Komayama K, Takenaka D, Yamashita A, Nijo N, Inagawa K, Morita N, Sasaki T, Yamamoto Y (2008) Quality control of photosystem II: impact of light and heat stresses. Photosynth Res 98:589–608

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Migita CT, Sato M, Sasahara M, Yoshida T (2005) Protein expressed by the ho2 gene of the cyanobacterium Synechocystis sp. PCC 6803 is a true heme oxygenase. Properties of the heme and enzyme complex. FEBS J 272:1012–1022

    Article  CAS  PubMed  Google Scholar 

  • Zhu W, Wilks A, Stojiljkovic I (2000) Degradation of heme in gram-negative bacteria: the product of the hemO gene of Neisseriae is a heme oxygenase. J Bacteriol 182:6783–6790

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank G. Burleigh for suggestions on phylogenetic analysis and comments on the manuscript, and W. Vermaas for the ΔPSII strain of Synechocystis sp. PCC 6803. M. Yilmaz was supported by a fellowship from the Turkish Council of Higher Education.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel I. Beale.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOC 1637 kb)

(DOC 107 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yilmaz, M., Kang, I. & Beale, S.I. Heme oxygenase 2 of the cyanobacterium Synechocystis sp. PCC 6803 is induced under a microaerobic atmosphere and is required for microaerobic growth at high light intensity. Photosynth Res 103, 47–59 (2010). https://doi.org/10.1007/s11120-009-9506-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-009-9506-3

Keywords

Navigation