Skip to main content
Log in

Binding of a Transition State Analog to Newly Synthesized Rubisco

  • Regular Paper
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Radioactive amino acids, when added to isolated pea chloroplasts or chloroplast extracts engaged in protein synthesis, are incorporated into Rubisco large subunits that co-migrate with native Rubisco during nondenaturing electrophoresis. We have added the transition state analog 2′-carboxyarabinitol bisphosphate (CABP) to chloroplast extracts after in organello or in vitro incorporation of radioactive amino acids into Rubisco large subunits. Upon addition of CABP the radioactive bands co-migrating with native Rubisco undergo a readily detected shift in electrophoretic mobility just as the native enzyme, thus demonstrating the ability of the newly assembled molecules to interact with this transition state analog.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

CABP:

2-carboxyarabinitol 1,5-bisphosophate

References

  • Andrews I, Knight S, Schneider G, Lindnvist T, Branden C-I, Lonmer G (1989) Crystal structure of the active site of ribulose bisphosphate carboxylase. Nature 337:229–234

    Google Scholar 

  • Andrews TJ, Hudson GS, Mate CJ, von Caemmerer S, Evans JR, Arvidsson YBC (1995) Rubisco: the consequences of altering its expression and activation in transgenic plants. J Exp Bot 46:1293–1300

    Article  CAS  Google Scholar 

  • Arnon DI (1949) Copper enzymes in isolated chloroplasts I. Polyphenoloxidase in beta vulgaris. Plant Physiol 24:1–15

    PubMed  CAS  Google Scholar 

  • Barraclough R, Ellis RJ (1980) Assembly of newly synthesized large subunits into ribulose bisphosphate carboxylase in isolated pea chloroplasts. Biochim Biophys Acta 608:19–31

    PubMed  CAS  Google Scholar 

  • Bloom M, Milos P, Roy H (1983) Light dependent assembly of ribulose bisphosphate carboxylase. Proc Natl Acad Sci USA 80:1013–1017

    Article  PubMed  CAS  Google Scholar 

  • Cannon S, Wang P, Roy H (1986) Inhibition of ribulose bisphosphate carboxylase assembly by antibody to a binding protein. J Cell Biol 103:1327–1335

    Article  PubMed  CAS  Google Scholar 

  • Chan P-H, Wildman H (1976) Chloroplast DNA codes for the primary structure of the large subunit of fraction I protein. Biochim Biophys Acta 277:627–680

    Google Scholar 

  • Furbank RT, Taylor WC (1995) Regulation of photosynthesis in C3 and C4 plants: a molecular approach. Plant Cell 7: 797–807

    Article  PubMed  CAS  Google Scholar 

  • Goloubinoff P, Gatenby A, Lorimer G (1989) GroE heat shock proteins promote assembly of foreign prokaryotic ribulose bisphosphate carboxylase oligomers in Escherichia coli. Nature 337:44–47

    Article  PubMed  CAS  Google Scholar 

  • Gutteridge S, Gatenby AA (1995) Rubisco synthesis, assembly, mechanism, and regulation. Plant Cell 7:809–819

    Article  PubMed  CAS  Google Scholar 

  • Hartman FC, Harpel MR (1994) Structure, function, regulation, and assembly of d-ribulose-1,5-bisphosphate carboxylase/oxygenase. Ann Rev Biochem 63:197–234

    Article  PubMed  CAS  Google Scholar 

  • Hubbs AE, Roy H (1992) Synthesis and assembly of large subunits into ribulose bisphosphate carboxylase/oxygenase in chloroplast extracts. Plant Physiol 100:272–281

    PubMed  CAS  Google Scholar 

  • Hubbs AE, Roy H (1993) Assembly of in vitro synthesized large subunits into ribulose biphosphate carboxylase/oxygenase; formation and discharge of an L8 like species. J Biol Chem 268:13519–13525

    PubMed  CAS  Google Scholar 

  • Johal S, Partridge B, Chollet R (1985) Structural characterization and the determination of negative cooperativity in the tight binding of 2′-carboxyarabinitol bisphosphate to higher plant ribulose bisphosphate carboxylase. J Biol Chem 260:9894–9904

    PubMed  CAS  Google Scholar 

  • Kanevsky I, Maliga P (1994) Relocation of the plastid rbcL gene to the nucleus yields functional ribulose-1,5-bisphosphate carboxylase in tobacco chloroplasts. Proc Natl Acad Sci 91:1961–1973

    Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during assembly of phage T4 head. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  • Lorimer G, Andrews T, Pierce J, Schloss J (1986) 2′-carboxy-3-keto-d-arabinitol-1,5-bisphosphate, the six-carbon intermediate of the ribulose bisphosphate carboxylase reaction. Phil Trans Roy Soc London B 313:397–407

    Article  CAS  Google Scholar 

  • Milos P, Bloom M, Roy H (1985) Methods for studying the assembly of ribulose bisphosphate carboxylase. Plant Mol Biol Rep 3:33–42

    Article  CAS  Google Scholar 

  • Milos P, Roy H (1984) ATP-released large subunits participate in the assembly of ribulose biphosphate carboxylase. J Cell Biochem 24:153–162

    Article  PubMed  CAS  Google Scholar 

  • Miziorko H, Lorimer G (1983) Ribulose-1, 5-bisphosphate carboxylase-oxygenase. Annu Rev Biochem 52:507–535

    Article  PubMed  CAS  Google Scholar 

  • Pierce J, Tolbert N, Barker R (1980) Interaction of ribulose bisphosphate carboxylase/oxygenase with transition state analogues. Biochem J 19:934–942

    Article  CAS  Google Scholar 

  • Roy H, Andrews TJ (2000) Rubisco: assembly and mechanism. In: Leegood RC, Sharkey TD, von Caemmerer S (eds) Photosynthesis: physiology and metabolism. Kluwer Academic Publishers, Dordrecht, Boston, London, pp 53–83

  • Roy H, Bloom M, Milos P, Monroe A (1982) Studies on the assembly of large subunits of ribulose bisphosphate carboxylase in isolated per chloroplasts. J Cell Biol 94:20–27

    Google Scholar 

  • Roy H, Chaudhari P, Cannon S (1988) Incorporation of large subunits into ribulose bisphosphate carboxylase in chloroplast extracts. Influence of added small subunits and of conditions during synthesis. Plant Physiol 86:44–49

    PubMed  CAS  Google Scholar 

  • Roy H, Patterson R, Jagendorf AT (1976) Identification of the small subunit of ribulose-1,5-bisphosphate carboxylase as a product of wheat leaf cyroplasmic ribosomes. Arch Biochem Biophys 172:64–73

    Article  PubMed  CAS  Google Scholar 

  • Schreuder HA, Knight S, Curmi PMG, Andersson I, Cascio D et al (1993) Formation of the active site of ribulose-1,5-bisphosphate carboxylase/oxygenase by a disorder-order transition from the unactivated to the activated form. Proc Natl Acad Sci USA 90:9968–9972

    Article  PubMed  CAS  Google Scholar 

  • Terzaghi BE, Laing WA, Christeller JT, Petersen GB, Hill DF (1986) Ribulose-1,5-bisphosphate carboxylase effect on the catalytic properties of changin methionine-330 to leucine in the Rhodospirillum rubrum enzyme. Biochem J 235:839–846

    PubMed  CAS  Google Scholar 

  • Whitney SM, Andrews TJ (2001) The gene for the ribulose- 1,5-bisphosphate carboxylase/oxygenase (Rubisco) small subunit small subunit relocated to the plastid genome of tobacco directs the synthesis of small subunits that assemble into Rubisco. Plant Cell 13:195–203

    Article  Google Scholar 

  • Zhang KYJ, Cascio D, Eisenberg D (1994) Crystal structure of the unactivated ribulose-1,5-bisohosphate carboxylase/oxygenase complexed with a transition state analog, 2- carboxy-d-arabiitol-1,5-bisohosphate. Protein Sci 3:64–69

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Steve Gutteridge for suggesting this project. This research supported by grants from the United States Department of Agriculture NRICGP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harry Roy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balaji, B., Gilson, M. & Roy, H. Binding of a Transition State Analog to Newly Synthesized Rubisco. Photosynth Res 89, 43–48 (2006). https://doi.org/10.1007/s11120-006-9067-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-006-9067-7

Keywords

Navigation