Skip to main content

Advertisement

Log in

Phenological analysis of unmanned aerial vehicle based time series of barley imagery with high temporal resolution

  • Published:
Precision Agriculture Aims and scope Submit manuscript

Abstract

Emerging strategies and technologies in agriculture, such as precision farming and phenotyping depend on detailed data on all stages of crop development. Unmanned aerial vehicles promise to deliver such time series as they allow very frequent measurements. In this study, we analyse a field trial with two barley cultivars and two contrasting sowing densities in a random plot design over 2 consecutive years using the aerial images of 28 flight campaigns, providing a very high temporal resolution. From empirically corrected RGB images, we calculated the green-red-vegetation-index (GRVI) and evaluated the time-series for its potential to track the seasonal development of the crop. The time series shows a distinct pattern during crop development that reflected the different developmental stages from germination to harvest. The simultaneous comparison to ground based assessment of phenological stages, allowed us to relate features of the airborne time series to actual events in plant growth and development. The measured GRVI values range from −0.10 (bare soil) to 0.20 (fully developed crop) and show a clear drop at time of ear pushing and ripening. Lower sowing densities were identified by smaller GRVI values during the vegetative growth phase. Additionally, we could show that the time of corn filling was strongly fixed and happened around 62 days after seeding in both years and under both density treatments. This case study provides a proof-of-concept evaluation how RGB data can be utilized to provide quantitative data in crop management and precision agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aasen, H., Burkart, A., Bolten, A., & Bareth, G. (2015). Generating 3D hyperspectral information with lightweight UAV snapshot cameras for vegetation monitoring: From camera calibration to quality assurance. ISPRS Journal of Photogrammetry and Remote Sensing, 108, 245–259. doi:10.1016/j.isprsjprs.2015.08.002.

    Article  Google Scholar 

  • Anderson, K., & Gaston, K. J. (2013). Lightweight unmanned aerial vehicles will revolutionize spatial ecology. Frontiers in Ecology and the Environment, 11(3), 138–146. doi:10.1890/120150.

    Article  Google Scholar 

  • Baluja, J., Diago, M. P., Balda, P., Zorer, R., Meggio, F., Morales, F., et al. (2012). Assessment of vineyard water status variability by thermal and multispectral imagery using an unmanned aerial vehicle (UAV). Irrigation Science, 30(6), 511–522. doi:10.1007/s00271-012-0382-9.

    Article  Google Scholar 

  • Bannari, A., Morin, D., Bonn, F., & Huete, A. R. (1995). A review of vegetation indices. Remote sensing reviews, 13(1–2), 95–120. doi:10.1080/02757259509532298.

    Article  Google Scholar 

  • Bendig, J., Bolten, A., Bennertz, S., Broscheit, J., Eichfuss, S., & Bareth, G. (2014). Estimating biomass of barley using crop surface models (CSMs) derived from UAV-Based RGB imaging. Remote Sensing, 6(11), 10395–10412. doi:10.3390/rs61110395.

    Article  Google Scholar 

  • Bendig, J., Willkomm, M., Tilly, N., Gnyp, M. L., Bennertz, S., Qiang, C., et al. (2013). Very high resolution crop surface models (CSMs) from UAV-based stereo images for rice growth monitoring In Northeast China. ISPRS—International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XL-1/W2, 45–50. doi:10.5194/isprsarchives-XL-1-W2-45-2013.

    Article  Google Scholar 

  • Berni JAJ, Zarco-Tejada PJ, Surez L, González-Dugo V, Fereres E (2008) Remote sensing of vegetation from uav platforms using lightweight multispectral and thermal imaging sensors. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXVII

  • Bongiovanni, R., & Lowenberg-DeBoer, J. (2004). Precision agriculture and sustainability. Precision Agriculture, 5(4), 359–387.

    Article  Google Scholar 

  • Burkart, A. (2016). Multitemporal assessment of crop parameters using multisensorial flying platforms. University of Bonn. Retrieved from http://hss.ulb.uni-bonn.de/2016/4225/4225.htm

  • Burkart, A., Aasen, H., Alonso, L., Menz, G., Bareth, G., & Rascher, U. (2015). Angular dependency of hyperspectral measurements over wheat characterized by a novel UAV based goniometer. Remote Sensing, 7(1), 725–746. doi:10.3390/rs70100725.

    Article  Google Scholar 

  • Burkart, A., Cogliati, S., Schickling, A., & Rascher, U. (2014). A novel UAV-Based ultra-light weight spectrometer for field spectroscopy. IEEE Sensors Journal, 14(1), 62–67.

    Article  Google Scholar 

  • Capolupo, A., Kooistra, L., Berendonk, C., Boccia, L., & Suomalainen, J. (2015). Estimating plant traits of grasslands from UAV-acquired hyperspectral images: A comparison of statistical approaches. ISPRS International Journal of Geo-Information, 4(4), 2792–2820. doi:10.3390/ijgi4042792.

    Article  Google Scholar 

  • Casadesús, J., Kaya, Y., Bort, J., Nachit, M. M., Araus, J. L., Amor, S., et al. (2007). Using vegetation indices derived from conventional digital cameras as selection criteria for wheat breeding in water-limited environments. Annals of Applied Biology, 150(2), 227–236. doi:10.1111/j.1744-7348.2007.00116.x.

    Article  Google Scholar 

  • Davidson, J., Christian, K., Jones, D., & Bremner, P. (1985). Responses of wheat to vernalization and photoperiod. Australian Journal of Agricultural Research, 36(3), 347. doi:10.1071/AR9850347.

    Article  Google Scholar 

  • Dorrington, G. E. (2007). Performance of battery-powered airships. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 221(1), 91–104.

    Article  Google Scholar 

  • Fiorani, F., & Schurr, U. (2013). Future scenarios for plant phenotyping. Annual Review of Plant Biology, 64(1), 267–291.

    Article  CAS  PubMed  Google Scholar 

  • Gamon, J. A., Peņuelas, J., & Field, C. B. (1992). A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency. Remote Sensing of Environment, 41(1), 35–44.

    Article  Google Scholar 

  • Godfray, H. C. J., Beddington, J. R., Crute, I. R., Haddad, L., Lawrence, D., Muir, J. F., et al. (2010). Food security: The challenge of feeding 9 billion people. Science (New York, N.Y.), 327(5967), 812–818. doi:10.1126/science.1185383.

    Article  CAS  Google Scholar 

  • Grenzdörffer, G. J.,& Niemeyer, F. (2011). UAV Based BRDF-Measurements of Agricultural surfaces with Pfiffikus. UAV-g 2011, Conference on Unmanned Aerial Vehicle in Geomatics,. Zurich, Switzerland: International Archives of the Photogrammetry, Remote Sensing and Spation Information Sciences.

  • Hess, R. (2010). An open-source SIFT Library. In Proceedings of the international conference on Multimedia - MM’10 (p. 1493). New York, USA: ACM Press. doi:10.1145/1873951.1874256

  • Jacobs, N., Burgin, W., Fridrich, N., Abrams, A., Miskell, K., Braswell, B. H., et al. (2009). The global network of outdoor webcams. In Proceedings of the 17th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems - GIS’09 (p. 111). New York, USA: ACM Press. doi:10.1145/1653771.1653789

  • Julitta, T., Cremonese, E., Migliavacca, M., Colombo, R., Galvagno, M., Siniscalco, C., et al. (2014). Using digital camera images to analyse snowmelt and phenology of a subalpine grassland. Agricultural and Forest Meteorology, 198–199, 116–125. doi:10.1016/j.agrformet.2014.08.007.

    Article  Google Scholar 

  • Keating, B., Carberry, P., Hammer, G., Probert, M., Robertson, M., Holzworth, D., et al. (2003). An overview of APSIM, a model designed for farming systems simulation. European Journal of Agronomy, 18(3–4), 267–288. doi:10.1016/S1161-0301(02)00108-9.

    Article  Google Scholar 

  • Lancashire, P. D., Bleiholder, H., van den Boom, T., Langelüddeke, P., Stauss, R., Weber, E., et al. (1991). A uniform decimal code for growth stages of crops and weeds. Annals of Applied Biology, 119(3), 561–601. doi:10.1111/j.1744-7348.1991.tb04895.x.

    Article  Google Scholar 

  • Lowe, D. G. (2004). Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 60(2), 91–110. doi:10.1023/B:VISI.0000029664.99615.94.

    Article  Google Scholar 

  • McBratney, A., Whelan, B., Ancev, T., & Bouma, J. (2005). Future directions of precision agriculture. Precision Agriculture, 6(1), 7–23.

    Article  Google Scholar 

  • Meier, U., Bleiholder, H., Buhr, L., Feller, C., Hack, H., Heß, M., et al. (2009). The BBCH system to coding the phenological growth stages of plants-history and publications. Journal für Kulturpflanzen, 61(2), 41–52.

    Google Scholar 

  • Motohka, T., Nasahara, K. N., Oguma, H., & Tsuchida, S. (2010). Applicability of green-red vegetation index for remote sensing of vegetation phenology. Remote Sensing, 2(10), 2369–2387. doi:10.3390/rs2102369.

    Article  Google Scholar 

  • Nijland, W., de Jong, R., de Jong, S. M., Wulder, M. A., Bater, C. W., & Coops, N. C. (2014). Monitoring plant condition and phenology using infrared sensitive consumer grade digital cameras. Agricultural and Forest Meteorology, 184, 98–106. doi:10.1016/j.agrformet.2013.09.007.

    Article  Google Scholar 

  • Peña Barragán, J. M., Kelly, M., Castro, A. I. de, & López Granados, F. (2012). Object-based approach for crop row characterization in UAV images for site-specific weed management. In Proceedings of the 4th GEOBIO (pp. 426–430). Rio de Janeiro. http://digital.csic.es/handle/10261/98054

  • Pettorelli, N. (2013). The normalized difference vegetation index (First Edit.). Oxford: Oxford University Press.

    Book  Google Scholar 

  • Piekarski, P., & Zwoliński, Z. (2014). temporal variation in vegetation indexes for Pine and Beech Stands during the vegetation season, Szczecin Lowland. Poland. Quaestiones Geographicae, 33(3), 131–143. doi:10.2478/quageo-2014-0037.

    Google Scholar 

  • Rascher, U., Alonso, L., Burkart, A., Cilia, C., Cogliati, S., Colombo, R., et al. (2015). Sun-induced fluorescence - a probe of photosynthesis beyond greenness: First maps from the imaging spectrometer HyPlant. Global Change Biology, 21(12), 4673–4684. doi:10.1111/gcb.13017.

    Article  CAS  PubMed  Google Scholar 

  • Rasmussen, J., Ntakos, G., Nielsen, J., Svensgaard, J., Poulsen, R. N., & Christensen, S. (2016). Are vegetation indices derived from consumer-grade cameras mounted on UAVs sufficiently reliable for assessing experimental plots? European Journal of Agronomy, 74, 75–92. doi:10.1016/j.eja.2015.11.026.

    Article  Google Scholar 

  • Sakamoto, T., Gitelson, A. A., Nguy-Robertson, A. L., Arkebauer, T. J., Wardlow, B. D., Suyker, A. E., et al. (2012). An alternative method using digital cameras for continuous monitoring of crop status. Agricultural and Forest Meteorology, 154–155, 113–126. doi:10.1016/j.agrformet.2011.10.014.

    Article  Google Scholar 

  • Schaepman-Strub, G., Schaepman, M. E., Painter, T. H., Dangel, S., & Martonchik, J. V. (2006). Reflectance quantities in optical remote sensing—Definitions and case studies. Remote Sensing of Environment, 103(1), 27–42.

    Article  Google Scholar 

  • von Bueren, S. K., Burkart, A., Hueni, A., Rascher, U., Tuohy, M. P., & Yule, I. J. (2015). Deploying four optical UAV-based sensors over grassland: Challenges and limitations. Biogeosciences, 12(1), 163–175. doi:10.5194/bg-12-163-2015.

    Article  Google Scholar 

  • Wang, G., Schmalenbach, I., von Korff, M., Léon, J., Kilian, B., Rode, J., et al. (2010). Association of barley photoperiod and vernalization genes with QTLs for flowering time and agronomic traits in a BC2DH population and a set of wild barley introgression lines. TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik, 120(8), 1559–1574. doi:10.1007/s00122-010-1276-y.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zarco-Tejada, P. J. J., González-Dugo, V., & Berni, J. A. J. A. J. (2011). Fluorescence, temperature and narrow-band indices acquired from a UAV platform for water stress detection using a micro-hyperspectral imager and a thermal camera. Remote Sensing of Environment, 117, 322–337. doi:10.1016/j.rse.2011.10.007.

    Article  Google Scholar 

  • Zhang, C., & Kovacs, J. M. (2012). The application of small unmanned aerial systems for precision agriculture: A review. Precision Agriculture, 13(6), 693–712. doi:10.1007/s11119-012-9274-5.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the diligent farming work at the barley experiment done by the team of the field lab Campus Klein-Altendorf, namely Mr. Winfried Bungert as the responsible technician. Huge thanks go to Domenik Radke for preparing parts of the image rectification. The authors acknowledge the funding of the CROP.SENSe.net project and PhenoCrops in the context of Ziel 2-Programmes NRW 2007–2013 “Regionale Wettbewerbsfähigkeit und Beschäftigung (EFRE)” by the Ministry for Innovation, Science and Research (MIWF) of the state of North Rhine–Westphalia (NRW) and European Union Funds for regional development (EFRE) (FKZ 005-1012-0001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Burkart.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (ZIP 181856 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burkart, A., Hecht, V.L., Kraska, T. et al. Phenological analysis of unmanned aerial vehicle based time series of barley imagery with high temporal resolution. Precision Agric 19, 134–146 (2018). https://doi.org/10.1007/s11119-017-9504-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11119-017-9504-y

Keywords

Navigation