Skip to main content

Advertisement

Log in

Advantage of multispectral imaging with sub-centimeter resolution in precision agriculture: generalization of training for supervised classification

  • Published:
Precision Agriculture Aims and scope Submit manuscript

Abstract

Nowadays it is known how to resolve many questions through satellite imagery such as Landsat 8 and the like, both from the theoretical point of view, i.e. research, as well as from the practical standpoint, e.g. commercial applications. This study evaluated the possibility of generalizing the training for supervised classification of multispectral images with sub-centimeter resolution. Images were taken under uncontrolled conditions of lighting and sun-target-sensor geometry and in the presence of normal interference in the agricultural environment. The images were obtained by the DuncanTech MS3100 camera (Auburn, CA, USA), a multispectral camera (green, red and near infra-red) mounted on a mobile ground platform and transformed into reflectance. For each element present (leaves, stems, spikes, soil, shadows, spectral references and sampling implements), a representative area was delimited in each image. These regions of interest were used, first, to quantify the separability of the classes. The next step was to define groups for cross-validation within these regions of interest; ten-folds were defined randomly with the constraint of a uniform distribution of classes. These folds were used in training and evaluation of the supervised classification using spectral angle mapper, maximum likelihood and decision trees. Spectral angle mapper correctly classified 49.2 % of cases, the maximum likelihood achieved a success rate of 86.8 % and the decision tree correctly classified 99.5 % of the spectral signatures. These results prove that multispectral images taken under uncontrolled conditions can be successfully classified by a generalized model that takes advantage of the higher spatial resolution. This opens a new line in which those pixels that do not correspond to vegetation, which bias the estimates of the crop parameters and complicate the recognition of objects, could be automatically masked.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ML:

Maximum likelihood

SAM:

Spectral angle mapper

References

  • Abuzar, M., O’Leary, G., & Fitzgerald, G. (2009). Measuring water stress in a wheat crop on a spatial scale using airborne thermal and multispectral imagery. Field Crops Research, 112(1), 55–65.

    Article  Google Scholar 

  • Akiyama, T., Inoue, Y., Shibayama, M., Awaya, Y., & Tanaka, N. (1996). Monitoring and predicting crop growth and analysing agricultural ecosystems by remote sensing. Agricultural and Food Science in Finland, 5(3), 367–376.

    Google Scholar 

  • Backoulou, G. F., Elliott, N. C., Giles, K., Phoofolo, M., & Catana, V. (2011). Development of a method using multispectral imagery and spatial pattern metrics to quantify stress to wheat fields caused by Diuraphis noxia. Computers and Electronics in Agriculture, 75(1), 64–70.

    Article  Google Scholar 

  • Bah, A., Balasundram, S. K., & Husni, M. H. A. (2012). Sensor technologies for precision soil nutrient management and monitoring. American Journal of Agricultural and Biological Science, 7(1), 43–49.

    Article  CAS  Google Scholar 

  • Bajwa, S. G., & Tian, L. F. (2005). Soil fertility characterization in agricultural fields using hyperspectral remote sensing. Transactions of the American Society of Agricultural Engineers, 48(6), 2399–2406.

    Article  CAS  Google Scholar 

  • Berni, J. A. J., Zarco-Tejada, P. J., Suárez, L., & Fereres, E. (2009). Thermal and narrowband multispectral remote sensing for vegetation monitoring from an unmanned aerial vehicle. IEEE Transactions on Geoscience and Remote Sensing, 47(3), 722–738. doi:10.1109/tgrs.2008.2010457.

    Article  Google Scholar 

  • Blackburn, G. A. (2007). Hyperspectral remote sensing of plant pigments. Journal of Experimental Botany, 58(4), 855–867. doi:10.1093/jxb/erl123.

    Article  CAS  PubMed  Google Scholar 

  • Brase, T. A. (2006). Precision Agriculture. New York: Thomson Delmar Learning.

    Google Scholar 

  • Breiman, L. (1984). Classification and regression trees. Boca Raton, FL, USA: Chapman & Hall/CRC.

    Google Scholar 

  • Chaki, J., Parekh, R., & Bhattacharya, S. (2015). Plant leaf recognition using texture and shape features with neural classifiers. Pattern Recognition Letters, 58, 61–68. doi:10.1016/j.patrec.2015.02.010.

    Article  Google Scholar 

  • Cogliati, S., Colombo, R., Rossini, M., Meroni, M., Julitta, T. & Panigada, C. (2012). Retrieval of vegetation fluorescence from ground-based and airborne high resolution measurements. In IEEE International Geoscience and Remote Sensing Symposium (IGARSS), (pp. 7129–7132). doi:10.1109/IGARSS.2012.6352019.

  • de Sá, J. P. M. (2007). Applied statistics using SPSS, STATISTICA, MATLAB and R. Berlin, Germany: Springer.

    Google Scholar 

  • Diacono, M., Rubino, P., & Montemurro, F. (2012). Precision nitrogen management of wheat. A review. Agronomy for Sustainable Development, 33(1), 219–241. doi:10.1007/s13593-012-0111-z.

    Article  Google Scholar 

  • FAO. (2006). World reference base for soil resources 2006: A framework for international classification, correlation and communication. Rome, Italy: Food and Agriculture Organization of the United Nations.

    Google Scholar 

  • Feng, W., Yao, X., Zhu, Y., Tian, Y. C., & Cao, W. X. (2008). Monitoring leaf nitrogen status with hyperspectral reflectance in wheat. European Journal of Agronomy, 28(3), 394–404. doi:10.1016/j.eja.2007.11.005.

    Article  CAS  Google Scholar 

  • Garcia-Ruiz, F. J., Wulfsohn, D., & Rasmussen, J. (2015). Sugar beet (Beta vulgaris L.) and thistle (Cirsium arvensis L.) discrimination based on field spectral data. Biosystems Engineering, 139, 1–15. doi:10.1016/j.biosystemseng.2015.07.012.

    Article  Google Scholar 

  • Haboudane, D., Miller, J. R., Tremblay, N., Zarco-Tejada, P. J., & Dextraze, L. (2002). Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture. Remote Sensing of Environment, 81(2–3), 416–426. doi:10.1016/s0034-4257(02)00018-4.

    Article  Google Scholar 

  • Hanes, J. (2013). Biophysical applications of satellite remote sensing. Berlin: Springer.

    Google Scholar 

  • Heege, H. J., Reusch, S., & Thiessen, E. (2008). Prospects and results for optical systems for site-specific on-the-go control of nitrogen-top-dressing in Germany. Precision Agriculture, 9(3), 115–131. doi:10.1007/s11119-008-9055-3.

    Article  Google Scholar 

  • Hess, M., Barralis, G., Bleiholder, H., Buhr, L., Eggers, T., Hack, H., et al. (1997). Use of the extended BBCH scale—General for the descriptions of the growth stages of mono- and dicotyledonous weed species. Weed Research, 37(6), 433–441.

    Article  Google Scholar 

  • Irons, J. R., Dwyer, J. L., & Barsi, J. A. (2012). The next Landsat satellite: The Landsat data continuity mission. Remote Sensing of Environment, 122, 11–21. doi:10.1016/j.rse.2011.08.026.

    Article  Google Scholar 

  • King, M. R., & Mody, N. A. (2010). Numerical and statistical methods for bioengineering: Applications in MATLAB. Cambridge, UK: Cambridge University Press.

    Book  Google Scholar 

  • Kise, M., & Zhang, Q. (2008). Creating a panoramic field image using multi-spectral stereovision system. Computers and Electronics in Agriculture, 60(1), 67–75.

    Article  Google Scholar 

  • Křen, J. (2012). Assessment of cereal stand structure and its changes during the growing season. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 60(3), 243–250.

    Google Scholar 

  • Kren, J., Misa, P., & Neudert, L. (2009). Cereal canopy characteristics as the stress indicators. Cereal Research Communications, 37(SUPPL 1), 121–124. doi:10.1556/crc.37.2009.1.14.

    Google Scholar 

  • Large, E. C. (1954). Growth stages in cereals illustration of the Feekes scale. Plant Pathology, 3(4), 128–129.

    Article  Google Scholar 

  • Li, Y., & Chen, H. (2013). Optimal spatial scale for crop-weed discrimination. Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 29(16), 159–165. doi:10.3969/j.issn.1002-6819.2013.16.020.

    Google Scholar 

  • Liang, S., Li, X., & Wang, J. (2012). Advanced remote sensing: Terrestrial information extraction and applications. Amsterdam, The Netherlands: Elsevier.

    Google Scholar 

  • Liu, M. W., Ozdogan, M., & Zhu, X. (2014). Crop type classification by simultaneous use of satellite images of different resolutions. IEEE Transactions on Geoscience and Remote Sensing, 52(6), 3637–3649.

    Article  Google Scholar 

  • Lucieer, A., Malenovský, Z., Veness, T., & Wallace, L. (2014). HyperUAS-imaging spectroscopy from a multirotor unmanned aircraft system. Journal of Field Robotics, 31(4), 571–590. doi:10.1002/rob.21508.

    Article  Google Scholar 

  • Mack, P. E. (1990). Viewing the earth: The social construction of the Landsat satellite system. Cambridge: MIT Press.

    Google Scholar 

  • Martinez, W. L., & Martinez, A. R. (2001). Computational statistics handbook with MATLAB. London: Taylor & Francis.

    Book  Google Scholar 

  • McCoy, R. M. (2005). Field methods in remote sensing. New York: Guilford Press.

    Google Scholar 

  • Merényi, E., Farrand, W. H., Taranik, J. V., & Minor, T. B. (2014). Classification of hyperspectral imagery with neural networks: comparison to conventional tools. EURASIP Journal on Advances in Signal Processing, 2014(1), 71. doi:10.1186/1687-6180-2014-71.

    Article  Google Scholar 

  • Moran, S., Fitzgerald, G., Rango, A., Walthall, C., Barnes, E., Bausch, W., et al. (2003). Sensor development and radiometric correction for agricultural applications. Photogrammetric Engineering and Remote Sensing, 69(6), 705–718.

    Article  Google Scholar 

  • Moran, M. S., Inoue, Y., & Barnes, E. M. (1997). Opportunities and limitations for image-based remote sensing in precision crop management. Remote Sensing of Environment, 61(3), 319–346. doi:10.1016/S0034-4257(97)00045-X.

    Article  Google Scholar 

  • Prasad, S. T., John, G. L., & Alfredo, H. (2011). Hyperspectral remote sensing of vegetation. Boca Raton: CRC.

    Google Scholar 

  • Richards, J. A. (2012). Remote sensing digital image analysis: An introduction. Berlin, Germany: Springer.

    Google Scholar 

  • Roberts, C. A., Workman, J., & Reeves, J. B. (2004). Near-infrared spectroscopy in agriculture. Madison, WI, USA: American Society of Agronomy.

    Google Scholar 

  • Rodriguez-Moreno, F., & Llera-Cid, F. (2011). Evaluating spectral vegetation indices for a practical estimation of nitrogen concentration in dual-purpose (forage and grain) triticale. Spanish Journal of Agricultural Research, 9(3), 681–686. doi:10.5424/sjar/20110903-265-10.

    Article  Google Scholar 

  • Rodriguez-Moreno, F., Lukas, V., Neudert, L., & Dryšlová, T. (2013). Spatial interpretation of plant parameters in winter wheat. Precision Agriculture, 15(4), 447–465. doi:10.1007/s11119-013-9340-7.

    Article  Google Scholar 

  • Roy, D. P., Wulder, M. A., Loveland, T. R., Woodcock, C. E., Allen, R. G., Anderson, M. C., et al. (2014). Landsat-8: Science and product vision for terrestrial global change research. Remote Sensing of Environment, 145, 154–172. doi:10.1016/j.rse.2014.02.001.

    Article  Google Scholar 

  • Schellberg, J., Hill, M. J., Gerhards, R., Rothmund, M., & Braun, M. (2008). Precision agriculture on grassland: Applications, perspectives and constraints. European Journal of Agronomy, 29(2–3), 59–71. doi:10.1016/j.eja.2008.05.005.

    Article  Google Scholar 

  • Sivertun, Å., Zöphel, K. & Ahlberg, S. (2014). LiDAR and hyperspectral data for landscape and vegetation classification and monitoring. Proceedings of the7th international congress on environmental modelling and software: Bold visions for environmental modeling, iEMSs (Vol. 4, pp. 2172–2179).

  • Stafford, J. V. (2000). Implementing precision agriculture in the 21st century. Journal of Agricultural Engineering Research, 76(3), 267–275. doi:10.1006/jaer.2000.0577.

    Article  Google Scholar 

  • Stein, A., van der Meer, F. D., & Gorte, B. (1999). Spatial statistics for remote sensing. Berlin, Germany: Springer.

    Google Scholar 

  • Ünsalan, C., & Boyer, K. L. (2011). Multispectral satellite image understanding: from land classification to building and road detection. Berlin: Springer.

    Book  Google Scholar 

  • Vega, F. A., Ramírez, F. C., Saiz, M. P., & Rosúa, F. O. (2015). Multi-temporal imaging using an unmanned aerial vehicle for monitoring a sunflower crop. Biosystems Engineering, 132, 19–27. doi:10.1016/j.biosystemseng.2015.01.008.

    Article  Google Scholar 

  • Verrelst, J., Rivera, J. P., Leonenko, G., Alonso, L., & Moreno, J. (2014). Optimizing LUT-based RTM inversion for semiautomatic mapping of crop biophysical parameters from Sentinel-2 and -3 data: Role of cost functions. IEEE Transactions on Geoscience and Remote Sensing, 52(1), 257–269. doi:10.1109/TGRS.2013.2238242.

    Article  Google Scholar 

  • Vouillot, M. O., Huet, P., & Boissard, P. (1998). Early detection of N deficiency in a wheat crop using physiological and radiometric methods. Agronomie, 18(2), 117–130.

    Article  Google Scholar 

  • Williamson, R. (1993). The future of remote sensing from space civilian satellite systems and applications. Collingdale, USA: DIANE Publishing.

    Google Scholar 

  • Yuhas, R. H., Goetz, A. F. H. & Boardman, J. W. (1992). Discrimination among semi-arid landscape endmembers using the Spectral Angle Mapper (SAM) algorithm. In Summaries of the third annual JPL airborne geoscience workshop pasadena, CA, USA (Vol. 1, pp. 147–149, Vol. AVIRIS Workshop): JPL.

  • Zhao, Y., He, Y., & Xu, X. (2012). A novel algorithm for damage recognition on pest-infested oilseed rape leaves. Computers and Electronics in Agriculture, 89, 41–50. doi:10.1016/j.compag.2012.07.014.

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Agency of Agricultural Research as research project No. QI111A133 “Improvement of cereal variety potential realization using temporal and spatial analysis of stand spectral characteristic”. This work was supported by the Ministry of Education, Youth and Sports of CR within the National Sustainability Program I (NPU I), Grant number LO1415. This publication has been possible thanks to the effort of two anonymous reviewers, whose wise indications have improved the document significantly.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Rodriguez-Moreno.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodriguez-Moreno, F., Kren, J., Zemek, F. et al. Advantage of multispectral imaging with sub-centimeter resolution in precision agriculture: generalization of training for supervised classification. Precision Agric 18, 615–634 (2017). https://doi.org/10.1007/s11119-016-9478-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11119-016-9478-1

Keywords

Navigation