Skip to main content
Log in

Apparent electrical conductivity measurements in an olive orchard under wet and dry soil conditions: significance for clay and soil water content mapping

  • Published:
Precision Agriculture Aims and scope Submit manuscript

Abstract

Mediterranean olive trees traditionally grow under rainfed conditions, on poor soils with steep slopes. Rainfall is mainly concentrated during autumn and winter and is characterized by intense rain pulses, separated by dry periods. The use of electromagnetic induction (EMI) techniques in these olive orchards might be questioned since EMI surveys are generally recommended to be performed under moist soil conditions. A 6.7 ha olive orchard was surveyed for EMI-based apparent electrical conductivity (ECa), both under wet and dry soil conditions. In addition, 48 soil samples were analyzed for soil texture and for soil water content (SWC) under both soil conditions. The relationships between ECa, soil texture and SWC, under both soil conditions were evaluated. Despite the significantly larger ECa values measured during the wet survey as compared to the dry survey, a similar spatial correlation structure was found, indicating temporally stable ECa patterns. Significant correlations (r) were found between both surveys for ECa (r = 0.67) and for SWC (r = 0.63). The correlation between SWC and clay content exceeded 0.60 for both surveys, and the correlation between ECa and clay content was twice as high under wet soil conditions as compared to dry soil. In both situations, the ECa surveys revealed the same patterns of soil texture, indicating that moist soil conditions are not an absolute prerequisite for the use of EMI to map the spatial variability of these soil properties. Nonetheless, measuring the ECa under different moisture conditions can provide additional information about soil moisture dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Adamchuk, V. I., Hummel, J. W., Morgan, M. T., & Upadhyaya, S. K. (2004). On-the-go soil sensors for precision agriculture. Computers and Electronics in Agriculture, 44, 71–91.

    Article  Google Scholar 

  • Bonfante, A., Agrillo, A., Albrizio, R., Basile, A., Buonomo, R., De Mascellis, R., et al. (2015). Functional homogeneous zones (fHZs) in viticultural zoning procedure: An Italian case study on Aglianico vine. SOIL, 1, 427–441.

    Article  Google Scholar 

  • Brevik, E. C., Fenton, T. E., & Lazari, A. (2006). Soil electrical conductivity as a function of soil water content and implications for soil mapping. Precision Agriculture, 7, 393–404.

    Article  Google Scholar 

  • Corwin, D. L., & Lesch, S. M. (2005). Characterizing soil spatial variability with apparent soil electrical conductivity: I. Survey protocols. Computers and Electronics in Agriculture, 46, 103–133.

    Article  Google Scholar 

  • Delefortrie, S., De Smedt, P., Saey, T., Van De Vijver, E., & Van Meirvenne, M. (2014). An efficient calibration procedure for correction of drift in EMI survey data. Journal of Applied Geophysics, 110, 115–125.

    Article  Google Scholar 

  • Domsch, H., & Giebel, A. (2004). Estimation of soil textural features from soil electrical conductivity recorded using the EM38. Precision Agriculture, 5, 389–409.

    Article  Google Scholar 

  • Dong, Y., Fei, L., & Ren, J. (2009). Influence of soil textures on transportation of water and nitrogen under single film hole infiltration of fertilizer solution. Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 25, 30–34.

    Google Scholar 

  • Doolittle, J. A., & Brevik, C. (2014). The use of electromagnetic induction techniques in soils studies. Geoderma, 223–225, 33–45.

    Article  Google Scholar 

  • Dualem Inc. (2007). DUALEM-21S user’s manual. Milton: Dualem Inc.

    Google Scholar 

  • Espejo, A., Giráldez, J. V., Vanderlinden, K., Taguas, E. V., & Pedrera, A. (2014). A method for estimating soil water diffusivity from moisture profiles and its applications across an experimental catchment. Journal of Hydrology, 516, 161–168.

    Article  Google Scholar 

  • García del Barrio, I., Malvárez, L., & González, J. I. (1971). Mapas provinciales de suelos. Cádiz. Madrid: Ministerio de Agricultura.

    Google Scholar 

  • Gómez, J. A., Giráldez, J. V., Pastor, M., & Fereres, E. (1999). Effects of tillage method on soil physical properties, infiltration and yield in an olive orchard. Soil & Tillage Research, 52, 167–175.

    Article  Google Scholar 

  • Goovaerts, P. (1997). Geostatistics for natural resources evaluation. Oxford, UK: Oxford University Press.

    Google Scholar 

  • Grossman, R. B., & Reinsch, T. G. (2002). The solid phase. In J. H. Dane & G. C. Topp (Eds.), SSSA book series: 5. Methods of soil analysis Part 4—Physical methods (pp. 201–415). Madison, WI: Soil Science Society of America Inc.

    Google Scholar 

  • Guo, W., Maas, S. J., & Bronson, K. F. (2012). Relationship between cotton yield and soil electrical conductivity, topography, and Landsat imagery. Precision Agriculture, 13, 678–692.

    Article  Google Scholar 

  • Islam, M. M., Meerschman, E., Saey, T., De Smedt, P., Van De Vijver, E., & Van Meirvenne, M. (2012). Comparing apparent electrical conductivity measurements on a paddy field under flooded and drained conditions. Precision Agriculture, 13, 384–392.

    Article  Google Scholar 

  • James, I. T., & Godwin, R. J. (2003). Soil, water and yield relationships in developing strategies for the precision application of nitrogen fertiliser to winter barley. Biosystems Engineering, 84, 467–480.

    Article  Google Scholar 

  • Maetens, W., Poesen, J., & Vanmaercke, M. (2012). How effective are soil conservation techniques in reducing plot runoff and soil loss in Europe and the Mediterranean? Earth-Science Reviews, 115, 21–36.

    Article  Google Scholar 

  • Martínez, G., Vanderlinden, K., Espejo, A. J., Giráldez, J. V., & Muriel, J. L. (2010). Field-scale soil moisture pattern mapping using electromagnetic induction. Vadose Zone Journal, 9, 871–881.

    Article  Google Scholar 

  • Martínez, G., Vanderlinden, K., Pachepsky, Y., Espejo, A., & Giráldez, J. V. (2012). Estimating topsoil water content of clay soils with data from time-lapse electrical conductivity surveys. Soil Science, 177, 369–376.

    Article  Google Scholar 

  • McNeill, J. D. (1980). Electromagnetic terrain conductivity measurement at low induction numbers. Technical Note TN-6. Missisauga, ON: Geonics Limited.

  • Núñez-Maderal, E. (2008). Calculadora Geodésica edición especial para la Península Ibérica (Geodesic calculator special edition for the Iberian peninsula), Cartesia.org, Spain. Retrieved January 9, 2015 from http://www.cartesia.org/download.php?op=viewdownloaddetails&lid=172&ttitle=Calculadora_UTM-Geogr%E1ficas_Espa%F1a.

  • Or, D., & Tuller, M. (1999). Liquid retention and interfacial area in variably saturated porous media: Upscaling from single-pore to sample-scale model. Water Resources Research, 35, 3591–3606.

    Article  CAS  Google Scholar 

  • Pedrera-Parrilla, A., Martínez, G., Espejo-Pérez, A. J., Gómez, J. A., Giráldez, J. V., & Vanderlinden, K. (2014). Mapping impaired olive tree development using electromagnetic induction surveys. Plant and Soil, 384, 381–400.

    Article  CAS  Google Scholar 

  • Resurreccion, A. C., Moldrup, P., Tuller, M., Ferré, T. P. A., Kawamoto, K., Komatsu, T., et al. (2011). Relationship between specific surface area and the dry end of the water retention curve for soils with varying clay and organic carbon contents. Water Resources Research. doi:10.1029/2010WR010229.

    Google Scholar 

  • Robinson, D. A., Abdu, H., Lebron, I., & Jones, S. B. (2012). Imaging of hill-slope soil moisture wetting patterns in a semi-arid oak savanna catchment using time-lapse electromagnetic induction. Journal of Hydrology, 416–417, 39–49.

    Article  Google Scholar 

  • Saey, T., Simpson, V. H., Cockx, L., & Van Meirvenne, M. (2009a). Comparing the EM38DD and DUALEM-21S sensors for depth-to-clay mapping. Soil Science Society of America Journal, 73, 7–12.

    Article  CAS  Google Scholar 

  • Saey, T., Simpson, D., Vitharana, U. W. A., Vermeersch, H., Vermang, J., & Van Meirvenne, M. (2008). Reconstructing the paleotopography beneath the loess cover with the aid of an electromagnetic sensor. Catena, 74, 58–64.

    Article  Google Scholar 

  • Saey, T., Van Meirvenne, M., Vermeersch, H., Ameloot, N., & Cockx, L. (2009b). A pedotransfer function to evaluate the soil profile textural heterogeneity using proximally sensed apparent electrical conductivity. Geoderma, 150, 389–395.

    Article  Google Scholar 

  • Salmoral, G., Aldaya, M. M., Chico, D., Garrido, A., & Llama, M. R. (2011). The water footprint of olives and olive oil in Spain. Spanish Journal of Agricultural Research, 9, 1089–1104.

    Article  Google Scholar 

  • Semple, E. C. (1931). The geography of the Mediterranean region: Its relation to ancient history. New York: AMS Press.

    Google Scholar 

  • Serrano, J. M., Shahidian, S., & Marques da Silva, J. R. (2013). Apparent electrical conductivity in dry versus wet soil conditions in a shallow soil. Precision Agriculture, 14, 99–114.

    Article  Google Scholar 

  • Sheets, K. R., & Hendrickx, J. M. H. (1995). Noninvasive soil water content measurement using electromagnetic induction. Water Resources Research, 31, 2401–2409.

    Article  Google Scholar 

  • Soil Survey Staff. (1999). Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys (2nd ed.). Washington, DC: NRCS USDA Hbk.

    Google Scholar 

  • Sudduth, K. A., Kitchen, N. R., Wiebold, W. J., Batchelor, W. D., Bollero, G. A., Bullock, D. G., et al. (2005). Relating apparent electrical conductivity to soil properties across the north-central USA. Computers and Electronics in Agriculture, 46, 263–283.

    Article  Google Scholar 

  • Taguas, E. V., Carpintero, E., & Ayuso, J. L. (2013). Assessing land degradation risk through the long-term analysis of erosivity: A case study in southern Spain. Land Degradation and Development, 24, 179–187.

    Article  Google Scholar 

  • Van Meirvenne, M., Islam, M. M., De Smedt, P., Meerschman, E. Van, De Vijver, E., & Saey, T. (2013). Key variables for the identification of soil management classes in the aeolian landscapes of north-west Europe. Geoderma, 199, 99–105.

    Article  Google Scholar 

  • Viscarra Rossel, R. A., Adamchuk, V. I., Sudduth, K. A., McKenzie, N. J., & Lobsey, C. (2011). Proximal soil sensing: An effective approach for soil measurements in space and time. Advances in Agronomy, 113, 237–282.

    Google Scholar 

Download references

Acknowledgments

Funding for this work came from the Ministerio de Economía y Competitividad and Fondo Europeo de Desarrollo Regional (Grants AGL2009-12936-C03-03and AGL2012-40128-C03-03), and from the Junta de Andalucía (AGR-4782). Also support through PhD Grant No. 8 (Res. 15/04/10) by Instituto de Investigación y Formación Agraria y Pesquera (IFAPA) is acknowledged. We express our gratitude to M. Morón, J. García, M. A. Ayala and E. Rodríguez of IFAPA Las Torres-Tomejil for their assistance with the field and laboratory work, particularly with the collection of soil samples. We also thank the owner of the farm, Alonso Zamudio, for his hospitality during our many fieldwork visits.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Pedrera-Parrilla.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pedrera-Parrilla, A., Van De Vijver, E., Van Meirvenne, M. et al. Apparent electrical conductivity measurements in an olive orchard under wet and dry soil conditions: significance for clay and soil water content mapping. Precision Agric 17, 531–545 (2016). https://doi.org/10.1007/s11119-016-9435-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11119-016-9435-z

Keywords

Navigation