Skip to main content

Advertisement

Log in

Detection of brown planthopper infestation based on SPAD and spectral data from rice under different rates of nitrogen fertilizer

  • Published:
Precision Agriculture Aims and scope Submit manuscript

Abstract

Reflectance and SPAD readings were measured in rice grown under different nitrogen fertilizer rates and infested with different numbers of brown planthopper (BPH), Nilaparvata lugens, to assess the relationships among these variables. The results showed that SPAD readings and reflectance from rice were significantly affected by BPH infestations and nitrogen fertilizer rates, whereas there was no interaction between the two factors. SPAD readings and reflectance decreased as BPH infestations increased but they increased as nitrogen fertilizer rates were increased. SPAD readings varied with position of leaf on the same stem of rice. The fourth and fifth leaves were more sensitive to BPH infestations than the first and second regardless of application rates of urea. The ratio indices of SPAD readings of the fourth to first leaf (RSPAD4/1), and fourth to second leaf (RSPAD4/2) were significantly related to BPH infestations, and they were relatively independent of nitrogen fertilizer rates in the single stem rice. The spectral reflectance from rice canopy significantly decreased in the near-infrared wavelength range as BPH infestations increased. The modified chlorophyll absorption ratio index (MCARI710) was found more suitable to relate the numbers of BPH under different nitrogen fertilizer rates and durations of BPH infestation. The main effects of BPH infestations on SPAD reading and reflectance indices were consistent regardless of nitrogen application rates. Therefore, SPAD reading and spectral indices have potential to detect BPH infestations in rice fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abdel-Rahman, E. M., Ahmed, F. B., van den Berg, M., & Way, M. J. (2010). Potential of spectroscopic data sets for sugarcane thrips (Fulmekiola serrata Kobus) damage detection. International Journal of Remote Sensing, 31, 4199–4216.

    Article  Google Scholar 

  • Bottrell, D. G., & Schoenly, K. G. (2011). Resurrecting the ghost of green revolutions past: The brown planthopper as a recurring threat to high yielding rice production in tropical Asia. Journal of Asia-Pacific Entomology, 15, 122–140.

    Article  Google Scholar 

  • Capucho, A. S., Zambolim, L., Duarte, H. S. S., Parreira, D. F., Ferreira, P. A., Lanza, F. E., et al. (2010). Influence of leaf position that correspond to whole plant severity and diagrammatic scale for white spot of corn. Crop Protection, 29, 1015–1020.

    Article  Google Scholar 

  • Carter, G. A., & Miller, R. L. (1994). Early detection of plant stress by digital imaging within narrow stress-sensitive wavebands. Remote Sensing of Environment, 50, 295–302.

    Article  Google Scholar 

  • Cheng, J. A., & Zhu, Z. R. (2006). Analysis on the key factors causing the outbreak of brown planthopper in Yangtze Area. Plant Protection, 32, 1–4.

    Google Scholar 

  • Daughtry, C. S. T., Walthall, C. L., Kim, M. S., de Brown Colstoun, E., & McMurtrey, J. E. (2000). Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance. Remote Sensing of Environment, 74, 229–239.

    Article  Google Scholar 

  • Delalieux, S., Somers, B., Verstraeten, W. W., Van Aardt, J. A. N., Keulemans, W., & Coppin, P. (2009). Hyperspectral indices to diagnose leaf biotic stress of apple plants, considering leaf phenology. International Journal of Remote Sensing, 30, 1887–1912.

    Article  Google Scholar 

  • Deol, G. S., Reese, J. C., & Gill, B. S. (1997). A rapid, nondestructive technique for assessing chlorophyll loss from greenbug (Homoptera: Aphididae) feeding damage on sorghum leaves. Journal of the Kansas Entomological Society, 70, 305–312.

    Google Scholar 

  • Elliott, N., Mirik, M., Yang, Z. M., Dvorak, T., Rao, M., Michels, J., et al. (2009). Airborne multi-spectral remote sensing of Russian wheat aphid injury to wheat. Southwestern Entomologist, 32, 213–219.

    Article  Google Scholar 

  • Esfahani, M., Abbasi, H., Rabiei, B., & Kavousi, M. (2008). Improvement of nitrogen management in rice paddy fields using chlorophyll meter (SPAD). Paddy and Water Environment, 6, 181–188.

    Article  Google Scholar 

  • Franzen, L. D., Gutsche, R. A., Heng-Moss, M. T., Higley, G. L., & Macedo, B. T. (2008). Physiological responses of wheat and barley to Russian wheat aphid, Diuraphis noxia (Mordvilko) and bird cherry-oat aphid, Rhopalosiphum padi (L.) (Hemiptera: Aphididae). Arthropod Plant Interactions, 2, 227–235.

    Article  Google Scholar 

  • Fraulo, A. B., Cohen, M., & Liburd, O. E. (2009). Visible/near infrared reflectance (VNIR) spectroscopy for detecting two spotted spider mite (Acari: Tetranychidae) damage in strawberries. Environmental Entomology, 38, 137–142.

    Article  PubMed  Google Scholar 

  • Gholizadeh, A., Amin, M. S. M., Anuar, A. R., & Aimrun, W. (2009). Evaluation of SPAD chlorophyll meter in two different rice growth stages and its temporal variability. European Journal of Scientific Research, 37, 591–598.

    Google Scholar 

  • Gitelson, A. A., Gritz, Y., & Merzlyak, M. N. (2003). Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. Journal of Plant Physiology, 160, 271–282.

    Article  CAS  PubMed  Google Scholar 

  • Gitelson, A. A., Viña, A., Ciganda, V., Rundquist, D. C., & Arkebauer, T. J. (2005). Remote estimation of canopy chlorophyll content in crops. Geophysical Research Letters, 32, L08403.

    Article  Google Scholar 

  • Havaux, M., & Tardy, F. (1999). Loss of chlorophyll with limited reduction of photosynthesis as an adaptive response of Syrian barley landraces to high-light and heat stress. Functional Plant Biology, 26, 569–578.

    CAS  Google Scholar 

  • Hibino, H., Usugi, T., Omura, T., Tsuchizaki, T., Shohara, K., & Iwasaki, M. (1985). Rice grassy stunt virus: a planthopper-borne circular filament. Phytopathology, 75, 894–899.

    Article  Google Scholar 

  • Houborg, R., Anderson, M., & Daughtry, C. (2009). Utility of an image-based canopy reflectance modeling tool for remote estimation of LAI and leaf chlorophyll content at the field scale. Remote Sensing of Environment, 113, 259–274.

    Article  Google Scholar 

  • Huang, J. L., He, F., Cui, K. H., Buresh, R. J., Xu, B., Gong, W. H., et al. (2008). Determination of optimal nitrogen rate for rice varieties using a chlorophyll meter. Field Crops Research, 105, 70–80.

    Article  Google Scholar 

  • Hussain, F., Bronson, K. F., Singh, Y., Singh, B., & Peng, S. B. (2000). Use of chlorophyll meter sufficiency indices for nitrogen management of irrigated rice in Asia. Agronomy Journal, 92, 875–8791.

    CAS  Google Scholar 

  • Ju, C. H., Tian, Y. C., Yao, X., Cao, W. X., Zhu, Y., & Hannaway, D. (2010). Estimating leaf chlorophyll content using red edge parameters. Pedosphere, 20, 633–644.

    Article  Google Scholar 

  • Lebourgeois, V., Bégué, A., Labbé, S., Houlès, M., & Martiné, J. F. (2012). A light-weight multi-spectral aerial imaging system for nitrogen crop monitoring. Precision Agriculture, 13, 525–541.

    Article  Google Scholar 

  • Lin, F. F., Qiu, L. F., Deng, J. S., Shi, Y. Y., Chen, L. S., & Wang, K. (2010). Investigation of SPAD meter-based indices for estimating rice nitrogen status. Computers and Electronics in Agriculture, 71, S60–S65.

    Article  Google Scholar 

  • Merton, R. N. (1998). Monitoring community hysteresis using spectral shift analysis and the red-edge vegetation stress index. In J. P. L. NASA (Ed.), AVIRIS Airborne Geosciences Workshop Proceedings (pp. 32–38). Pasadena, CA: JPL Publication 97-21, NASA Jet Propulsion Laboratory.

  • Nault, B. A., Taylor, A. G., Urwiler, M., Rabaey, T., & Hutchison, W. D. (2004). Neonicotinoid seed treatments for managing potato leafhopper infestations in snap bean. Crop Protection, 23, 147–154.

    Article  CAS  Google Scholar 

  • Nguyen, H. T., & Lee, B. W. (2006). Assessment of rice leaf growth and nitrogen status by hyperspectral canopy reflectance and partial least square regression. European Journal of Agronomy, 24, 349–356.

    Article  Google Scholar 

  • Prabhakar, M., Prasad, Y. G., Vennila, S., Thirupathi, M., Sreedevi, G., Rao, G. R., et al. (2013). Hyperspectral indices for assessing damage by the solenopsis mealybug (Hemiptera: Pseudococcidae) in cotton. Computers and Electronics in Agriculture, 97, 61–70.

    Article  Google Scholar 

  • Reisig, D. D., & Godfrey, L. D. (2010). Remotely sensing arthropod and nutrient stressed plants: a case study with nitrogen and cotton aphid (Hemiptera: Aphididae). Environmental Entomology, 39, 1255–1263.

    Article  PubMed  Google Scholar 

  • Rondeaux, G., Steven, M., & Baret, F. (1996). Optimization of soil-adjusted vegetation indices. Remote Sensing of Environment, 55, 95–107.

    Article  Google Scholar 

  • Rubia-Sanchez, E., Suzuki, Y., Miyamoto, K., & Watanabe, T. (1999). The potential for compensation of the effects of the brown planthopper Nilaparvata lugens Stål (Homoptera: Delphacidae) feeding on rice. Crop Protection, 18, 39–45.

    Article  Google Scholar 

  • SAS Institute Inc. (2003). Base SAS 9 Procedures Guide. Cary, NC: SAS Institute Inc.

  • Sōgawa, K. (1982). The rice brown planthopper: Feeding physiology and host plant interactions. Annual Review of Entomology, 27, 49–73.

    Article  Google Scholar 

  • Sun, Q. H., & Liu, X. D. (2010). Spectral characteristics of the damaged rice plant by brown planthopper, Nilaparvata lugens. Chinese Journal of Rice Science, 24, 203–209.

    Google Scholar 

  • Turner, F. T., & Jund, M. F. (1994). Assessing the nitrogen requirements of rice crops with a chlorophyll meter. Australian Journal of Experimental Agriculture, 34, 1001–1005.

    Article  Google Scholar 

  • Watanabe, T., & Kitagawa, H. (2000). Photosynthesis and translocation of assimilates in rice plants following phloem feeding by the planthopper Nilaparvata lugens (Homoptera: Delphacidae). Journal of Economic Entomology, 93, 1192–1198.

    Article  CAS  PubMed  Google Scholar 

  • Wu, C. Y., Niu, Z., Tang, Q., & Huang, W. J. (2008). Estimating chlorophyll content from hyperspectral vegetation indices: Modeling and validation. Agricultural and Forest Meteorology, 148, 1230–1241.

    Article  Google Scholar 

  • Wu, C. Y., Niu, Z., Tang, Q., Huang, W. J., Rivard, B., & Feng, J. L. (2009). Remote estimation of gross primary production in wheat using chlorophyll-related vegetation indices. Agricultural and Forest Meteorology, 149, 1015–1021.

    Article  Google Scholar 

  • Yang, C. M., Cheng, C. H., & Chen, R. K. (2007). Changes in spectral characteristics of rice canopy infested with brown planthopper and leaffolder. Crop Science, 47, 329–335.

    Article  CAS  Google Scholar 

  • Yu, Z. W., Xiao, M. K., Wang, J., Wu, C. L., He, M. L., Yu, X. H., et al. (2009). Characteristics and reasons of the outbreak of the brown planthopper Nilaparvata lugens in Anqing in 2006. Chinese Bulletin of Entomology, 46, 883–887.

    Google Scholar 

  • Zarco-Tejada, P. J., Miller, J. R., Mohammed, G. H., Noland, T. L., & Sampson, P. H. (2001). Estimation of chlorophyll fluorescence under natural illumination from hyperspectral data. International Journal of Applied Earth Observation and Geoinformation, 3, 321–327.

    Article  Google Scholar 

  • Zhou, Q. F., & Wang, J. H. (2003). Comparison of upper leaf and lower leaf of rice plants in response to supplemental nitrogen levels. Journal of Plant Nutrition, 26, 607–617.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank two anonymous reviewers and the editor for very helpful comments and suggestions on this manuscript. This study was supported by the National Key Basic Research Program of China (973 Program) (No. 2010CB126201), and the Special Fund for Agro-scientific Research in the Public Interest of China (200903051).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang-Dong Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, JR., Sun, JY., Liao, HJ. et al. Detection of brown planthopper infestation based on SPAD and spectral data from rice under different rates of nitrogen fertilizer. Precision Agric 16, 148–163 (2015). https://doi.org/10.1007/s11119-014-9367-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11119-014-9367-4

Keywords

Navigation