Skip to main content
Log in

Combination active optical and passive thermal infrared sensor for low-level airborne crop sensing

  • Published:
Precision Agriculture Aims and scope Submit manuscript

Abstract

An integrated active optical, and passive thermal infrared sensing system was deployed on a low-level aircraft (50 m AGL) to record and map the simple ratio (SR) index and canopy temperature of a 230 ha cotton field. The SR map was found to closely resemble that created by a RapidEye satellite image, and the canopy temperature map yielded values consistent with on-ground measurements. The fact that both the SR and temperature measurements were spatially coincident facilitated the rapid and convenient generation of a direct correlation plot between the two parameters. The scatterplot exhibited the typical reflectance index-temperature profile generated by previous workers using complex analytical techniques and satellite imagery. This sensor offers a convenient and viable alternative to other forms of optical and thermal remote sensing for those interested in plant and soil moisture investigations using the ‘reflectance index-temperature’ space concept.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Barker, D. W., & Sawyer, J. E. (2012). Using active canopy sensing to adjust nitrogen application rate in corn. Agronomy Journal, 104(4), 926–933.

    Article  Google Scholar 

  • Blum, A., Mayer, J., & Gozlan, G. (1982). Infrared thermal sensing of plant canopies as a screening technique for dehydration avoidance in wheat. Field Crops Research, 5, 137–146.

    Article  Google Scholar 

  • Cheng, K. S., Su, Y. F., Yeh, H. C., Chang, J. H., & Hung, W. C. (2012). A path radiance estimation algorithm using reflectance measurements in radiometric control areas. International Journal of Remote Sensing, 33(5), 1543–1566.

    Article  Google Scholar 

  • Falzon, G., Lamb, D. W., & Schneider, D. (2012). The Dynamic Aerial Survey algorithm architecture and its use in airborne fertilizer applications. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 5(6), 1772–1779.

    Article  Google Scholar 

  • Holland, K. H., Lamb, D. W., & Schepers, J. S. (2012). Radiometry of proximal active optical sensors (AOS) for agricultural sensing. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 5(6), 1793–1802.

    Article  Google Scholar 

  • Holland, K. H., & Schepers, J. S. (2010). Derivation of a variable rate nitrogen application model for in-season fertilization of corn. Agronomy Journal, 102, 1415–1424.

    Article  Google Scholar 

  • Holland, K. H. & Schepers, J. S. (2011). Active proximal sensing: Review of waveband selection, vegetation indices, scientific trump cards, etc., In “Proceedings of the ASA CSSA SSSA 2011 International Annual Meetings” (ASA, CSSA & SSSA: Madison, WI, USA), Paper 61–1.

  • Holland, K. H., & Schepers, J. S. (2013). Use of a virtual-reference concept to interpret active crop canopy sensor data. Precision Agriculture, 14(1), 71–85.

    Article  Google Scholar 

  • Holland, K. H., Schepers, J. S., Shanahan, J. F., & Horst, G. L. (2004). Plant canopy sensor with modulated polychromatic light source. In Mulla D. J. (Ed.), In Proceedings of the 7th International Conference on Precision Agriculture and Other Precision Resources Management, University of Minnesota, MN, USA: Department of Soil, Water and Climate.

  • Inman, D., Khosla, R., & Mayfield, T. (2005). On-the-go active remote sensing for efficient crop nitrogen management. Sensor Review, 25(3), 209–214.

    Article  Google Scholar 

  • Jackson, R. D., Idso, S. B., Beginato, R. J., & Pinter, P. J. (1981). Canopy temperature as a crop water stress indicator. Water Resources Research, 17, 1133–1138.

    Article  Google Scholar 

  • Jones, H. G. (2004). Irrigation scheduling: Advantages and pitfalls of plant based methods. Journal of Experimental Botany, 55(407), 2427–2436.

    Article  PubMed  CAS  Google Scholar 

  • Jones, H. G., Archer, N., Rotenberg, E., & Casa, R. (2003). Radiation measurement for plant ecophysiology. Journal of Experimental Botany, 54(384), 879–889.

    Article  PubMed  CAS  Google Scholar 

  • Jones, H. G., Serraj, R., Loveys, B. R., Xiong, L., Wheaton, A., & Price, A. H. (2009). Thermal infrared imaging of crop canopies for the remote diagnosis and quantification of plant responses to water stress in the field. Functional Plant Biology, 36, 978–989.

    Article  Google Scholar 

  • Jordan, C. F. (1969). Derivation of leaf-area index from quality of light on the forest floor. Ecology, 50, 633–666.

    Article  Google Scholar 

  • Jung-Rothenhaeusler, F., Weichelt, H. & Pach, M. (2007). RapidEye. A novel approach to space borne geo-information solutions. In: ISPRS Hanover Workshop 2007. High-Resolution earth imaging for geospatial information. Hannover. http://www.ipi.uni-hannover.de/fileadmin/institut/pdf/Jung-roth_weichelt_pach.pdf. Accessed 8 May 2013.

  • Künnemeyer, R., Schaare, P. N., & Hanna, M. M. (2001). A simple reflectometer for on-farm pasture assessment. Computers and Electronics in Agriculture, 31, 125–136.

    Article  Google Scholar 

  • Lamb, D. W., Schneider, D. A., Trotter, M. G., Schaefer, M. T., & Yule, I. J. (2011). Extended-altitude, aerial mapping of crop NDVI using an active optical sensor: A case study using a Raptor™ sensor over Wheat. Computers and Electronics in Agriculture, 77, 69–73.

    Article  Google Scholar 

  • Lamb, D. W., Trotter, M. G., & Schneider, D. A. (2009). Ultra low-level airborne (ULLA) sensing of crop canopy reflectance: A case study using a CropCircle™ sensor. Computers and Electronics in Agriculture, 69, 86–91.

    Article  Google Scholar 

  • McKenzie, D. C. (1998). Soil management guide-SOILpak for cotton growers. (3rd Ed), Munroe, A. and Roberts, E. (Eds.), New South Wales Agriculture, Sydney, NSW Australia, 352 pp.

  • Moran, M. S., Clarke, T. R., Inoue, Y., & Vidal, A. (1994). Estimating crop water deficit using the relation between surface-air temperature and spectral vegetation index. Remote Sensing of Environment, 49, 246–263.

    Article  Google Scholar 

  • Patel, N. R., Anapashsha, R., Kumar, S., Saha, S. K., & Dadhwal, V. K. (2009). Assessing potential of MODIS derived temperature/vegetation condition index (TVDI) to infer soil moisture status. International Journal of Remote Sensing, 30, 23–39.

    Article  Google Scholar 

  • Pinter, P. J., Zipoli, G., Reginato, R. J., Jackson, R. D., Idso, S. B., & Hohman, J. P. (1990). Canopy temperature as an indicator of differential water use and yield performance among wheat cultivars. Agricultural Water Management, 18, 35–48.

    Article  Google Scholar 

  • Sandholt, I., Rasmussen, K., & Andersen, J. (2002). A simple interpretation of the surface temperature/vegetation index space for assessment of surface moisture status. Remote Sensing of Environment, 79, 213–224.

    Article  Google Scholar 

  • Slater, P. N. (1980). Remote sensing—optics and optical systems. Reading: Addison Wesley Publishing Co.

    Google Scholar 

  • Solari, F., Shanahan, J., Ferguson, R., Schepers, J., & Gitelson, A. (2008). Active sensor reflectance measurements of corn nitrogen status and yield potential. Agronomy Journal, 100, 571–579.

    Article  CAS  Google Scholar 

  • Trotter, M. G., Lamb, D. W., Donald, G. E., & Schneider, D. A. (2010). Active optical sensors for quantifying and mapping pasture biomass: A case study using red and near infrared waveband combinations from a CropCircle™ in Tall Fescue (Festuca arundinacea) pastures. Crop and Pasture Science, 61, 389–398.

    Article  Google Scholar 

  • Wang, X., Yang, W., Wheaton, A., Cooley, N., & Moran, B. (2010). Efficient registration of optical and IR images for automatic plant water stress assessment. Computers and Electronics in Agriculture, 74, 230–237.

    Article  Google Scholar 

  • Whelan, B. M., McBratney, A. B. & Minasny, B. (2001). VESPER-spatial prediction software for precision agriculture. In Grenier, G. and Blackmore S. (Eds.), ECPA2001. In Proceedings of the 3rd European Conference on Precision Agriculture (pp 139-144), Montpellier France: Agro-Montpellier.

Download references

Acknowledgments

This work was funded by the CRC for Spatial Information (CRCSI), established and supported under the Australian Government Cooperative Research Centres Programme. The authors wish to acknowledge the technical support of Kyle Holland (Holland Scientific) in designing and building the Raptor™ Mk II sensor, David Boundy and Rob Maslen (Superair) for mounting the sensor on the aircraft and conducting the aerial surveys, Tim Neale (PrecisionAgriculture.com) for provision of the RapidEye satellite imagery and Nick Gillingham (Sundown Pastoral Company) for providing access to the field site. Specific mention of product brand names (e.g. CropCircle™ and Raptor™) or service providers (e.g. Holland Scientific or Superair) does not constitute an endorsement of these particular products or service providers. The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. W. Lamb.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lamb, D.W., Schneider, D.A. & Stanley, J.N. Combination active optical and passive thermal infrared sensor for low-level airborne crop sensing. Precision Agric 15, 523–531 (2014). https://doi.org/10.1007/s11119-014-9350-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11119-014-9350-0

Keywords

Navigation