Skip to main content

Advertisement

Log in

Spatial variability in grape yield and quality influenced by soil and crop nutrition characteristics

  • Published:
Precision Agriculture Aims and scope Submit manuscript

Abstract

Knowledge of spatial variability of soil fertility and plant nutrition is critical for planning and implementing site-specific vineyard management. To better understand the key drivers behind vineyard variability, yield mapping from 2002 to 2005 and 2007 (the monitor broke down in 2006) was used to identify zones of different productive potential in a Pinot Noir field located in Raimat (Lleida, Spain). Simultaneously, the vineyard field was sampled in 2002, 2003 and 2007, applying three different schemes (depending on the number of target vines in different grape yield zones). The sampling carried out in 2002, which involved different soil, topographic and crop properties (mineral contents in petiole), made it possible to evaluate the influence of these parameters on the grape yield variability. The zones of lowest yield coincided with locations in which the nutritional status of the crop exhibited the lowest values, particularly with respect to petiole contents of calcium and manganese. Sampling systems adopted in 2003 and 2007 (grape quality and soil attributes) confirmed the inverse spatial correlation between grape yield and some grape quality parameters and, more importantly, showed that the percentage of soil carbonates had a great influence on grape quality probably due to the reduced availability of manganese in calcareous soils. Site-specific vineyard management could therefore be considered using two different strategies: variable-rate application of foliar fertilizers to increase the yield in areas with low production and also foliar or soil fertilizers to improve the quality specifications in some areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Acevedo-Opazo, C., Tisseyre, B., Guillaume, S., & Ojeda, H. (2008). The potential of high spatial resolution information to define within-vineyard zones related to vine water status. Precision Agriculture, 9, 285–302.

    Article  Google Scholar 

  • Arnó, J., Bordes, X., Ribes-Dasi, M., Blanco, R., Rosell, J. R., & Esteve, J. (2005). Obtaining grape yield maps and analysis of within-field variability in Raimat (Spain). In: J. V. Stafford (Eds.) Precision Agriculture’05. Proceedings of the 5th European conference on precision agriculture (pp. 899–906). Wageningen, The Netherlands: Wageningen Academic Publishers.

  • Arno, J., Martínez-Casasnovas, J. A., Ribes-Dasi, M., & Rosell, J. R. (2011). Clustering of grape yield maps to delineate site-specific management zones. Spanish Journal of Agricultural Research, 9(3), 721–729.

    Google Scholar 

  • Bramley, R. G. V. (2001). Variation in the yield and quality of winegrapes and the effect of soil property variation in two contrasting Australian vineyards. In: G. Grenier & S. Blackmore (Eds.), Proceedings of the 3rd European conference on precision agriculture (pp. 767–772). France: Agro Montpellier.

  • Bramley, R. G. V. (2005). Understanding variability in winegrape production systems. 2. Within vineyard variation in quality over several vintages. Australian Journal of Grape and Wine Research, 11, 33–42.

    Article  Google Scholar 

  • Bramley, R. G. V., & Hamilton, R. P. (2004). Understanding variability in winegrape production systems. 1. Within vineyard variation in yield over several vintages. Australian Journal of Grape and Wine Research, 10, 32–45.

    Article  Google Scholar 

  • Bramley, R. G. V., & Hamilton, R. P. (2007). Terroir and precision viticulture: are they compatible? Journal International des Sciences de la Vigne et du Vin, 41(1), 1–8.

    Google Scholar 

  • Bramley, R.G.V., & Lamb, D.W. (2003). Making sense of vineyard variability in Australia. In R. Ortega & A. Esser (Eds.), Precision viticulture. Proceedings of the IX Congreso Latinoamericano de Viticultura y Enología (pp. 35–54). Santiago, Chile: Pontificia Universidad Católica.

  • Bramley, R. G. V., Ouzman, J., & Boss, P. K. (2011). Variation in vine vigour, grape yield and vineyard soils and topography as indicators of variation in the chemical composition of grapes, wine and wine sensory attributes. Australian Journal of Grape and Wine Research, 17, 217–229.

    Article  CAS  Google Scholar 

  • Bramley, R., & Proffitt, T. (1999). Managing variability in viticultural production. The Australian Grapegrower & Winemaker, 427, 11–16.

    Google Scholar 

  • Bramley, R. G. V. & Williams, S. K. (2001). A protocol for winegrape yield maps. In G. Grenier & S. Blackmore (Eds.) Proceedings of the 3rd European conference on precision agriculture (pp 773–778). France: Agro Montpellier.

  • Hall, A., Lamb, D. W., Holzapfel, B. P., & Louis, J. P. (2010). Within-season temporal variation in correlations between vineyard canopy and winegrape composition and yield. Precision Agriculture, 12, 103–117. doi:10.1007/s11119-010-9159-4.

    Article  Google Scholar 

  • Hidalgo, J. (2006). La calidad del vino desde el viñedo (The quality of wine from the vineyard). Madrid, Spain: Mundi-Prensa.

    Google Scholar 

  • Hosmer, D. W., & Lemeshow, S. (1989). Applied logistic regression. New York: Wiley.

    Google Scholar 

  • Iland, P., Bruer, N., Edwards, G., Weeks, S., & Wilkes, E. (2004). Chemical analysis of grapes and wine: techniques and concepts. Campbelltown, South Australia: Patrick Iland Wine Promotions.

    Google Scholar 

  • Mallarino, A. P., Oyarzabal, E. S., & Hinz, P. N. (1999). Interpreting within-field relationships between crop yields and soil and plant variables using factor analysis. Precision Agriculture, 1, 15–25.

    Article  Google Scholar 

  • Manly, B. F. J. (1994). Multivariate statistical methods. A primer. London, England: Chapman & Hall.

    Google Scholar 

  • Martínez-Casasnovas, J. A., & Bordes, X. (2005). Viticultura de precisión: Predicción de cosecha a partir de variables del cultivo e índices de vegetación (Precision Viticulture. Predicting grape yield from crop variables and vegetation indices). Revista de Teledetección, 24, 67–71.

    Google Scholar 

  • Minasny, B., McBratney, A. B., & Whelan, B. M. (2005). VESPER version 1.62. Australian Centre for Precision Agriculture. http://www.usyd.edu.au/su/agric/acpa. Accessed 1 Dec 2011.

  • Ortega, R. A., Esser, A., & Santibáñez, O. (2003). Spatial variability of wine grape yield and quality in Chilean vineyards: economic and environmental impacts. In J. Stafford, A. Werner (Eds.), Precision agriculture. Proceedings of the 4th European conference on precision agriculture (pp. 499–506). Wageningen, The Netherlands: Wageningen Academic Publishers.

  • Santesteban, L. G., Miranda, C., Jiménez, C., Fuentemilla, M., Urretavizcaya, I., Tisseyre, B., et al. (2010). Evaluation of the interest of NDVI to identify distinct management units in vineyards. Revista de Teledetección, 33, 11–16. [In Spanish].

    Google Scholar 

  • Tardaguila, J., Baluja, J., Arpon, L., Balda, P., & Oliveira, M. (2011). Variations of soil properties affect the vegetative growth and yield components of “Tempranillo” grapevines. Precision Agriculture, 12, 762–773.

    Article  Google Scholar 

  • Taylor, J.A. (2004). Digital terroirs and precision viticulture: Investigations into the application of information technology in Australian vineyards. PhD Thesis, The University of Sydney, Australia.

  • Tisseyre, B., Mazzoni, C., Ardoin, N., & Clipet, C. (2001). Yield and harvest quality measurement in precision viticulture—Application for a selective vintage. In: G. Grenier & S. Blackmore (Eds.), Proceedings of the 3rd European conference on precision agriculture (pp. 133–138). France: Agro Montpellier.

  • Tisseyre, B., Mazzoni, C., & Fonta, H. (2008). Within-field temporal stability of some parameters in viticulture: Potential toward a site specific management. International Journal of Wine and Vine Research, 42, 27–39.

    Google Scholar 

  • Tisseyre, B., Taylor, J., & Ojeda, H. (2007). New technologies and methodologies for site-specific viticulture. International Journal of Wine and Vine Research, 41, 63–76.

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Codorníu Group for the trust and confidence that it has placed in this research and for providing the authors with the opportunity to carry out this work through a collaboration programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Arnó.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arnó, J., Rosell, J.R., Blanco, R. et al. Spatial variability in grape yield and quality influenced by soil and crop nutrition characteristics. Precision Agric 13, 393–410 (2012). https://doi.org/10.1007/s11119-011-9254-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11119-011-9254-1

Keywords

Navigation