Skip to main content
Log in

An analytical C3-crop growth model for precision farming

  • Published:
Precision Agriculture Aims and scope Submit manuscript

Abstract

A simple and transparent analytical model for C3-crop biomass accumulation is introduced. The model is aimed to be used as a decision tool in precision farming. It is valid when growth is limited only by radiation or water and gives the optimal (maximum) biomass. It contains 8 fixed parameters, all with a clear basis in physics, chemistry and physiology. As a function of time, the growth is divided into two phases: exponential and linear. At an early stage of growth, the growth is exponential due to the expanding leaf area of the crop. At this stage, the model needs 6 parameters. The growth becomes linear when the leaf area is adequate to use all possible radiation. The model needs 2 parameters at this later stage. Water-limited growth needs an additional set of 4 parameters to describe phenomena of water related processes. When water is a limiting factor, the root-growth model becomes critical because the daily root growth determines the crop’s growth directly. The model was tested first against field data at one point where all relevant inputs and parameters of the model were measured. Despite the simplicity of the model, there was a good agreement between simulated and measured values of biomass and leaf area. A scenario is described to show how the model may be used in practice and what kind of field data is needed. In on-line precision farming the key factor is the amount of radiation used by the crop, which can be measured adequately with two sensors, one above and one below the canopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Baker, J. M. (1996). Use and abuse of crop simulation models: Foreword. Agronomy Journal, 88, 689.

    Article  Google Scholar 

  • Batchelor, W. D., Basso, B., & Paz, J. O. (2002). Examples of strategies to analyze spatial and temporal yield variability using crop models. European Journal of Agronomy, 18, 141–158.

    Article  Google Scholar 

  • Boote, K. J., Jones, J. W., & Pickering, N. B. (1996). Potential uses and limitations of crop models. Agronomy Journal, 88, 704–716.

    Article  Google Scholar 

  • Bouman, B. A. M., van Keulen, H., van Laar, H. H., & Rabbinge, R. (1996). The ‘School of de Wit’ crop growth simulation models: A pedigree and historical overview. Agricultural Systems, 52, 171–198.

    Article  Google Scholar 

  • Brooks, R. J., Semenov, M. A., & Jamieson, P. D. (2001). Simplifying sirius: Sensitivity analysis and development of a meta-model for wheat yield prediction. European Journal of Agronomy, 14, 43–60.

    Article  Google Scholar 

  • de Wit, C. T. (1965). Photosynthesis of leaf canopies. Agricultural Research Reports, 663, 1–57.

    Google Scholar 

  • Ewert, F. (2002). Effects of elevated CO2 and drought on wheat: Testing crop simulation models for different experimental and climatic conditions. Agriculture, Ecosystems & Environment, 93, 249–266.

    Article  Google Scholar 

  • Ferreyra, R. A., Jones, J. W., & Graham, W. D. (2006). Parameterizing spatial crop models with inverse modeling: Sources of error and unexpected results. Transactions of the ASABE, 49, 1547–1561.

    Google Scholar 

  • Goudriaan, J., & Monteith, J. L. (1990). A mathematical function for crop growth based on light interception and leaf area expansion. Annals of Botany, 66, 695–701.

    Google Scholar 

  • Hay, R. K. M., & Porter, J. R. (2006). The physiology of crop yield (2nd ed.). Oxford, UK: Blackwell Publishing Ltd.

    Google Scholar 

  • Hirose, T. (2005). Development of Monsi-Saeki theory on canopy structure and function. Annals of Botany, 95, 483–494.

    Article  PubMed  CAS  Google Scholar 

  • Irmak, S., & Mutiibwa, D. (2008). Dynamics of photosynthetic photon flux density and light extinction coefficient to assess radiant energy interactions for maize canopy. Transactions of the ASABE, 51, 1663–1673.

    Google Scholar 

  • Monteith, J. L. (1969). Light interception and radiative exchange in crop stands. In J. L. Easton, F. A. Haskins, C. Y. Sullivan, & C. M. H. van Bavel (Eds.), Physiological aspects of crop yield (pp. 89–111). Madison, Wisconsin: American Society of Agronomy.

    Google Scholar 

  • Monteith, J. L. (1996). The quest for balance in crop modeling. Agronomy Journal, 88, 695–697.

    Article  Google Scholar 

  • Monteith, J. L., & Moss, C. J. (1977). Climate and the efficiency of crop production in Britain [and discussion]. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 281, 277–294.

    Article  Google Scholar 

  • Nobel, P. S. (1999). Physicochemical and environmental plant physiology. San Diego, CA: Academic Press.

    Google Scholar 

  • Passioura, J. B. (1996). Simulation models: Science, snake oil, education, or engineering? Agronomy Journal, 88, 690–694.

    Article  Google Scholar 

  • Poorter, H., & Nagel, O. (2000). The role of biomass allocation in the growth response of plants to different levels of light, CO2, nutrients and water: A quantitative review. Functional Plant Biology, 27, 595–607.

    Article  CAS  Google Scholar 

  • Richards, F. J. (1969). The quantitative analysis of growth. In F. C. Steward (Ed.), Plant physiology: A treatise (pp. 3–78). New York: Academic Press.

    Google Scholar 

  • Ruget, F., Brisson, N., Delecolle, R., & Faivre, R. (2002). Sensitivity analysis of a crop simulation model, STICS, in order to choose the main parameters to be estimated. Agronomie, 22, 133–158.

    Article  Google Scholar 

  • Sadler, E. J., Barnes, E. M., Batchelor, W. D., Paz, J., & Irmak, A. (2002). Addressing spatial variability in crop model applications. In L. R. Ahuja, L. Ma, & T. A. Howell (Eds.), Agricultural system models in field research and technology transfer, (pp. 253). Boca Raton: Lewis Publishers.

    Google Scholar 

  • Sadler, E. J., Gerwig, B. K., Evans, D. E., Busscher, W. J., & Bauer, P. J. (2000). Site-specific modeling of corn yield in the SE coastal plain. Agricultural Systems, 64, 189–207.

    Article  Google Scholar 

  • Sadler, E. J., Sudduth, K., & Jones, J. (2007). Separating spatial and temporal sources of variation for model testing in precision agriculture. Precision Agriculture, 8, 297–310.

    Article  Google Scholar 

  • Schmidhalter, U., Maidl, F.-X., Heuwinkel, H., Demmel, M., Auernhammer, H., Noack, P., et al. (2008). Precision farming—Adaptation of land use management to small scale heterogeneity. In P. Schröder, J. Pfadenhauer, & J. C. Munch (Eds.), Perspectives for agroecosystem management (pp. 121–199). Elsevier: Amsterdam.

    Chapter  Google Scholar 

  • Sinclair, T. R. (2006). A reminder of the limitations in using Beer’s law to estimate daily radiation interception by vegetation. Crop Science, 46, 2343–2347.

    Article  Google Scholar 

  • Sinclair, T. R., & Seligman, N. G. (1996). Crop modeling: From infancy to maturity. Agronomy Journal, 88, 698–704.

    Article  Google Scholar 

  • Steduto, P., Hsiao, T., & Fereres, E. (2007). On the conservative behavior of biomass water productivity. Irrigation Science, 25, 189–207.

    Article  Google Scholar 

  • Taiz, L., & Zeiger, E. (1991). Plant physiology. Redwood City, California: The Benjamin/Cummings Publishing Company, Inc.

    Google Scholar 

  • Thornley, J. H. M. (1979). Wheat grain growth: Anthesis to maturity. Australian Journal of Plant Physiology, 6, 187–194.

    Article  Google Scholar 

  • Tiusanen, J. (2005). Attenuation of a soil scout radio signal. Biosystems Engineering, 90, 127–133.

    Article  Google Scholar 

  • Tiusanen, J. (2009). Wireless soil scout prototype radio signal reception compared to the attenuation model. Precision Agriculture, 10, 372–381. doi:10.1007/s11119-008-9096-7.

    Article  Google Scholar 

  • Wallach, D., Goffinet, B., Bergez, J., Debaeke, P., Leenhardt, D., & Aubertot, J. (2001). Parameter estimation for crop models: A new approach and application to a corn model. Agronomy Journal, 93, 757–766.

    Article  Google Scholar 

Download references

Acknowledgements

J. Ahokas, L. Alakukku, J. Tiusanen, B. Mannfors, P. Mäkelä and F. Stoddard are gratefully thanked for critical reading of early versions of the manuscript and improvements of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikko Hautala.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hautala, M., Hakojärvi, M. An analytical C3-crop growth model for precision farming. Precision Agric 12, 266–279 (2011). https://doi.org/10.1007/s11119-010-9174-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11119-010-9174-5

Keywords

Navigation