Skip to main content
Log in

Orthogonal Polynomials Associated with Equilibrium Measures on \(\mathbb {R}\)

  • Published:
Potential Analysis Aims and scope Submit manuscript

Abstract

Let K be a non-polar compact subset of \(\mathbb {R}\) and μ K denote the equilibrium measure of K. Furthermore, let P n (⋅;μ K ) be the n-th monic orthogonal polynomial for μ K . It is shown that \(\|P_{n}\left (\cdot ; \mu _{K}\right )\|_{L^{2}(\mu _{K})}\), the Hilbert norm of P n (⋅;μ K ) in L 2(μ K ), is bounded below by Cap(K)n for each \(n\in \mathbb {N}\). A sufficient condition is given for\(\left (\|P_{n}\left (\cdot ;\mu _{K}\right )\|_{L^{2}(\mu _{K})}/\text {Cap}(K)^{n}\right )_{n=1}^{\infty }\) to be unbounded. More detailed results are presented for sets which are union of finitely many intervals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alpan, G., Goncharov, A.: Orthogonal polynomials for the weakly equilibrium Cantor sets. Proc. Amer. Math. Soc. 144(9), 3781–3795 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alpan, G., Goncharov, A.: Orthogonal polynomials on generalized Julia sets, Preprint (2015), arXiv:1503.07098v3

  3. Alpan, G., Goncharov, A., Şi̇mşek, A.N.: Asymptotic properties of Jacobi matrices for a family of fractal measures, accepted for publication in Exp. Math.

  4. Aptekarev, A.I.: Asymptotic properties of polynomials orthogonal on a system of contours, and periodic motions of Toda lattices. Mat. Sb. 125, 231–258 (1984). English translations in Math. USSR Sb., 53, 233–260 (1986)

  5. Barnsley, M.F., Geronimo, J.S., Harrington, A.N.: Infinite-dimensional Jacobi matrices associated with Julia sets. Proc. Amer. Math. Soc. 88(4), 625–630 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  6. Barnsley, M.F., Geronimo, J.S., Harrington, A.N.: Almost periodic Jacobi matrices associated with Julia sets for polynomials. Comm. Math. Phys. 99(3), 303–317 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  7. Christiansen, J.S.: Szegő’s theorem on Parreau-Widom sets. Adv. Math. 229, 1180–1204 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Christiansen, J.S., Simon, B., Zinchenko, M.: Finite gap Jacobi matrices, II. The Szegö class. Constr. Approx. 33, 365–403 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Christiansen, J.S., Simon, B., Zinchenko, M.: Asymptotics of Chebyshev Polynomials, I. Subsets of \(\mathbb {R}\), Preprint (2015), arXiv:1505.02604v1

  10. Damanik, D., Killip, R., Simon, B.: Perturbations of orthogonal polynomials with periodic recursion coefficients. Ann. Math. 171, 1931–2010 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Geronimo, J.S., Van Assche, W.: Orthogonal polynomials on several intervals via a polynomial mapping. Trans. Amer. Math. Soc. 308, 559–581 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  12. Goncharov, A., Hatinoğlu, B.: Widom factors. Potential Anal. 42, 671–680 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Peherstorfer, F.: Orthogonal and extremal polynomials on several intervals. J. Comput. Appl. Math. 48, 187–205 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  14. Peherstorfer, F.: Deformation of minimal polynomials and approximation of several intervals by an inverse polynomial mapping. J. Approx. Theory 111, 180–195 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  15. Peherstorfer, F., Yuditskii, P.: Asymptotic behavior of polynomials orthonormal on a homogeneous set. J. Anal. Math. 89, 113–154 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ransford, T.: Potential Theory in the Complex Plane. Cambridge University Press (1995)

  17. Rivlin, T.J.: Chebyshev Polynomials: From Approximation Theory to Algebra and Number Theory, 2nd edn. Wiley, New York (1990)

  18. Saff, E.B., Totik, V.: Logarithmic potentials with external fields. Springer-Verlag, New York (1997)

    Book  MATH  Google Scholar 

  19. Schiefermayr, K.: A lower bound for the minimum deviation of the Chebyshev polynomial on a compact real set. East J. Approx. 14, 223–233 (2008)

    MathSciNet  MATH  Google Scholar 

  20. Simon, B.: Equilibrium measures and capacities in spectral theory. Inverse Probl. Imaging 1, 713–772 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  21. Simon, B.: Szegő’s Theorem and Its Descendants: Spectral Theory for L 2 Perturbations of Orthogonal Polynomials. Princeton University Press, Princeton (2011)

  22. Sodin, M., Yuditskii, P.: Functions deviating least from zero on closed subsets of the real axis. St. Petersbg. Math. J. 4, 201–249 (1993)

    Google Scholar 

  23. Stahl, H., Totik, V.: General Orthogonal Polynomials, Encyclopedia of Mathematics, vol. 43. Cambridge University Press, New York (1992)

  24. Totik, V.: Asymptotics for Christoffel functions for general measures on the real line. J. Anal. Math. 81, 283–303 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  25. Totik, V.: Polynomials inverse images and polynomial inequalities. Acta Math. 187, 139–160 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  26. Totik, V.: Chebyshev constants and the inheritance problem. J. Approx. Theory 160, 187–201 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  27. Totik, V.: The polynomial inverse image method. In: Neamtu, M., Schumaker, L. (eds.) Springer Proceedings in Mathematics, Approximation Theory XIII, vol. 13, pp. 345–367. San Antonio (2010)

  28. Totik, V.: Chebyshev polynomials on compact sets. Potential Anal. 40, 511–524 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  29. Totik, V., Yuditskii, P.: On a conjecture of Widom. J. Approx. Theory 190, 50–61 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  30. Van Assche, W.: Invariant zero behaviour for orthgonal polynomials on compact sets of the real line. Bull. Soc. Math. Belg. Ser. B 38, 1–13 (1986)

    MATH  Google Scholar 

  31. Widom, H.: Polynomials associated with measures in the complex plane. J. Math. Mech. 16, 997–1013 (1967)

    MathSciNet  MATH  Google Scholar 

  32. Widom, H.: Extremal polynomials associated with a system of curves in the complex plane. Adv. Math. 3, 127–232 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  33. Yudistkii, P.: On the direct cauchy theorem in widom domains: Positive and negative examples. Comput. Methods Funct. Theory 11, 395–414 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gökalp Alpan.

Additional information

The author is supported by a grant from Tübitak: 115F199.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alpan, G. Orthogonal Polynomials Associated with Equilibrium Measures on \(\mathbb {R}\) . Potential Anal 46, 393–401 (2017). https://doi.org/10.1007/s11118-016-9589-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11118-016-9589-3

Keywords

Mathematics Subject Classification (2010)

Navigation