Skip to main content
Log in

The Heat Equaton with General Periodic Boundary Conditions

  • Published:
Potential Analysis Aims and scope Submit manuscript

Abstract

In this paper we address the well posedness of the linear heat equation under general periodic boundary conditions in several settings depending on the properties of the initial data. We develop an L q theory not based on separation of variables and use techniques based on uniform spaces. We also allow less directions of periodicity than the dimension of the problem. We obtain smoothing estimates on the solutions. Also, based on symmetry arguments, we handle Dirichlet or Neumann boundary conditions in some faces of the unit cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amann, H.: Linear and Quasilinear Parabolic Problems. Vol. I, volume 89 of Monographs in Mathematics. Birkhäuser Boston Inc, Boston (1995). Abstract linear theory

    Book  Google Scholar 

  2. Amann, H., Hieber, M., Simonett, G.: Bounded \(H_{\infty }\)-calculus for elliptic operators. Differ. Integr. Equ. 7(3–4), 613–653 (1994)

    MathSciNet  MATH  Google Scholar 

  3. Arrieta, J.M., Cholewa, J.W., Dlotko, T., Rodríguez-Bernal, A.: Linear parabolic equations in locally uniform spaces. Math. Models Methods Appl. Sci. 14(2), 253–293 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bourgain, J.: Global Solutions of Nonlinear Schrodinger Equations. Colloquium Publications (Amer Mathematical Soc). American Mathematical Society (1999)

  5. Brezis, H., Cazenave, T.: A nonlinear heat equation with singular initial data. J. Anal. Math. 68, 277–304 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cross, M.C., Hohenberg, P.C.: Pattern formation outside of equilibrium. Rev. Mod. Phys. 65, 851 (1993)

    Article  Google Scholar 

  7. Daners, D.: Heat kernel estimates for operators with boundary conditions. Math. Nachr. 217, 13–41 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  8. Feller, S.E., Pastor, R.W.: On simulating lipid bilayers with an applied surfacetension: Periodic boundary conditions and undulations. Biophys. Chem. J. 71, 1350–1355 (1996)

    Article  Google Scholar 

  9. Flaschka, H., McLaughlin, D.W.: Canonically conjugate variables for the korteweg-de vries equation and the toda lattice with periodic boundary conditions. Prog. Theor. Phys. 55(2), 438–456 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Classics in Mathematics. Springer-Verlag, Berlin (2001). Reprint of the 1998 edition

    MATH  Google Scholar 

  11. Makov, G., Payne, M.C.: Periodic boundary conditions in ab initio calculations. Phys. Rev. B 51(7), 4014–4022 (1995)

    Article  Google Scholar 

  12. Henry, D.: Geometric Theory of Semilinear Parabolic Equations, volume 840 of Lecture Notes in Mathematics. Springer-Verlag, Berlin (1981)

    Book  Google Scholar 

  13. Lunardi, A.: Analytic Semigroups and Optimal Regularity in Parabolic Problems. Progress in Nonlinear Differential Equations and their Applications, vol. 16. Birkhäuser Verlag, Basel (1995)

  14. Muller-Kirsten, H.J.W.: Introduction to Quantum Mechanics: Schroedinger Equation and Path Integral. World Scientific Publishing Company (2006)

  15. Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer-Verlag New York Inc. (1983)

  16. Pomeau, Y., Manneville, P.: Stability and fluctuations of a spatially periodic convective flow. Journal de Physique Lettres 40, 609–612 (1979)

    Article  Google Scholar 

  17. Quesada, C., Rodríguez-Bernal, A: Smoothing and perturbation for some fourth order linear parabolic equations in \(\mathbb {R}^{n}\). J. Math. Anal. Appl. 412, 1105–1134 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Robinson, J.C.: Infinite-Dimensional Dynamical Systems. Cambridge University Press (2001)

  19. Smith, E.R., de Leeuw, S.W., Perram, J.W.: Simulation of electrostatic systems in periodic boundary conditions. ii. equivalence of boundary conditions. Proc. R. Soc. Lond. A Math. Phys. Sci. 373(1752), 57–66 (1980)

    Article  MathSciNet  Google Scholar 

  20. Perram, J.W., de Leeuw, S.W., Smith, E.R.: Simulation of electrostatic systems in periodic boundary conditions. i. lattice sums and dielectric constants. Proc. R. Soc. Lond. A Math. Phys. Sci. 373, 27–56 (1980)

    Article  MathSciNet  Google Scholar 

  21. Simon, S.H.: The Oxford Solid State Basics. Oxford University Press (2013)

  22. Stam, J.: Stable fluids. In: SIGGRAPH (1999)

  23. Stein, E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton Mathematical Series No. 30. Princeton University Press, Princeton (1970)

    Google Scholar 

  24. Temam, R.: Infinite-Dimensional Dynamical Systems in Mechanics and Physics, volume 68 of Applied Mathematical Sciences, 2nd edn. Springer-Verlag, New York (1988)

    Book  Google Scholar 

  25. Weissler, F.B.: Local existence and nonexistence for semilinear parabolic equations in L p. Indiana Univ. Math. J. 29(1), 79–102 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  26. Xia, Z., Zhou, C., Yong, Q., Wang, X.: On selection of repeated unit cell model and application of unified periodic boundary conditions in micro-mechanical analysis of composites. Int. J. Solids Struct. 43(2), 266–278 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  27. Yeh, I.-C., Hummer, G.: System-size dependence of diffusion coefficients and viscosities from molecular dynamics simulations with periodic boundary conditions. J. Phys. Chem. B 108(40), 15873–15879 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aníbal Rodríguez-Bernal.

Additional information

Partially supported by Project MTM2012-31298, MICINN and GR58/08 Grupo 920894, UCM, Spain.

Partially supported by ICMAT Severo Ochoa project SEV-2015-0554 (MINECO)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodríguez-Bernal, A. The Heat Equaton with General Periodic Boundary Conditions. Potential Anal 46, 295–321 (2017). https://doi.org/10.1007/s11118-016-9584-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11118-016-9584-8

Keywords

Mathematics Subject Classification (2010)

Navigation