Skip to main content

Advertisement

Log in

Harnack Inequality for Hypoelliptic Second Order Partial Differential Operators

  • Published:
Potential Analysis Aims and scope Submit manuscript

Abstract

We consider non-negative solutions \(u:{\Omega }\longrightarrow \mathbb {R}\) of second order hypoelliptic equations

$ \mathcal {L} u(x) =\sum \limits _{i,j=1}^{n} \partial _{x_{i}} \left (a_{ij}(x)\partial _{x_{j}} u(x) \right ) + \sum \limits _{i=1}^{n} b_{i}(x) \partial _{x_{i}} u(x) =0 $

where Ω is a bounded open subset of \(\mathbb {R}^{n}\) and x denotes the point of Ω. For any fixed x 0 ∈ Ω, we prove a Harnack inequality of this type

$ \sup _{K} u \le C_{K} u(x_{0})\qquad \forall \ u \ \text { s.t. } \ \mathcal {L} u=0, u\geq 0, $

where K is any compact subset of the interior of the \(\mathcal {L}\)-propagation set of x 0 and the constant C K does not depend on u.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Agrachev, A.A., Sachkov, Y.L.: Control theory from the geometric viewpoint, Encyclopaedia of Mathematical Sciences, vol. 87. Springer-Verlag, Berlin (2004). Control Theory and Optimization, II

  2. Amano, K.: Maximum principles for degenerate elliptic-parabolic operators. Indiana Univ. Math. J. 28(4), 545–557 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bauer, H.: Harmonische Räume und ihre Potentialtheorie. Ausarbeitung einer im Sommersemester 1965 an der Universität Hamburg gehaltenen Vorlesung. Lecture Notes in Mathematics, No. 22. Springer-Verlag, Berlin-New York (1966)

    MATH  Google Scholar 

  4. Bonfiglioli, A., Lanconelli, E.: Matrix-exponential groups and Kolmogorov-Fokker-Planck equations. J. Evol. Equ. 12(1), 59–82 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bonfiglioli, A., Lanconelli, E., Uguzzoni, F.: Uniform Gaussian estimates for the fundamental solutions for heat operators on Carnot groups. Adv. Differ. Equ. 7 (10), 1153–1192 (2002)

    MathSciNet  MATH  Google Scholar 

  6. Bonfiglioli, A., Lanconelli, E., Uguzzoni, F.: Stratified Lie groups and potential theory for their sub-Laplacians. Springer Monographs in Mathematics. Springer, Berlin (2007)

    MATH  Google Scholar 

  7. Bony, J.M.: Principe du maximum, inégalite de Harnack et unicité du problème de Cauchy pour les opérateurs elliptiques dégénérés. Ann. Inst. Fourier (Grenoble) 19(fasc. 1), 277–304 xii (1969)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cinti, C., Menozzi, S., Polidoro, S.: Two-sided bounds for degenerate processes with densities supported in subsets of N. Potential Anal. 42(1), 39–98 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cinti, C., Nyström, K., Polidoro, S.: A note on Harnack inequalities and propagation sets for a class of hypoelliptic operators. Potential Anal. 33(4), 341–354 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Constantinescu, C., Cornea, A.: Potential Theory on Harmonic Spaces. Springer-Verlag, New York-Heidelberg (1972). With a preface by H. Bauer, Die Grundlehren der mathematischen Wissenschaften, Band 158

    Book  MATH  Google Scholar 

  11. Kogoj, A., Lanconelli, E.: An invariant Harnack inequality for a class of hypoelliptic ultraparabolic equations. Mediterr. J. Math. 1(1), 51–80 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  12. Mumford, D.: Elastica and computer vision. In: Algebraic Geometry and its Applications (West Lafayette, IN, 1990), pp 491–506. Springer, New York (1994)

  13. Rudin, W.: Real and Complex Analysis, 3rd edn. McGraw-Hill Book Co., New York (1987)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessia E. Kogoj.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kogoj, A.E., Polidoro, S. Harnack Inequality for Hypoelliptic Second Order Partial Differential Operators. Potential Anal 45, 545–555 (2016). https://doi.org/10.1007/s11118-016-9557-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11118-016-9557-y

Keywords

Mathematics Subject Classification (2010)

Navigation