Skip to main content
Log in

Time-Inhomogeneous Jump Processes and Variable Order Operators

  • Published:
Potential Analysis Aims and scope Submit manuscript

Abstract

In this paper we introduce non-decreasing jump processes with independent and time non-homogeneous increments. Although they are not Lévy processes, they somehow generalize subordinators in the sense that their Laplace exponents are possibly different Bernštein functions for each time t. By means of these processes, a generalization of subordinate semigroups in the sense of Bochner is proposed. Because of time-inhomogeneity, two-parameter semigroups (propagators) arise and we provide a Phillips formula which leads to time dependent generators. The inverse processes are also investigated and the corresponding governing equations obtained in the form of generalized variable order fractional equations. An application to a generalized subordinate Brownian motion is also examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allouba, H., Nane, E.: Interacting time-fractional and Δν PDEs systems via Brownian-time and inverse-stable-Lévy-time Brownian sheets. Stoch. Dyn. 13(1), 1250012 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  2. Applebaum, D.: Lévy Processes and Stochastic Calculus, 2nd edn. Cambridge University Press, New York (2009)

    Book  MATH  Google Scholar 

  3. Baeumer, B., Meerschaert, M.M.: Stochastic solutions for fractional Cauchy problems. Frac. Calcu. Appl. Anal. 4(4), 481–500 (2001)

    MathSciNet  MATH  Google Scholar 

  4. Barndorff-Nielsen, O.E., Shiryaev, A.: Change of time and change of measure. In: Advanced Series on Statistical Science & Applied Probability, vol. 13. World Scientific Publishing, Hackensack (2010)

    Book  MATH  Google Scholar 

  5. Bazhlekova, E.: Subordination principle for fractional evolution equations. Fract. Calc. Appl. Anal. 3(3), 213–230 (2000)

    MathSciNet  MATH  Google Scholar 

  6. Bertoin, J.: Lévy Processes. Cambridge University Press, Cambridge (1996)

    MATH  Google Scholar 

  7. Bertoin, J.: Subordinators: Examples and Applications. Lectures on Probability Theory and Statistics (Saint-Flour, 1997), 1–91, Lectures Notes in Math., vol. 1717. Springer, Berlin (1999)

  8. Bogdan, K., Byczkowski, T., Kulczycki, T., Ryznar, M., Song, R., Vondraček, Z.: Potential analysis of stable processes and its extensions. In: Graczyk, P., Stos, A. (eds.) Lecture Notes in Mathematics, vol. 1980, pp 87–176 (2009)

  9. D’Ovidio, M., Orsingher, E., Toaldo, B: Time-changed processes governed by space-time fractional telegraph equations. Stoch. Anal. Appl. 32(6), 1009–1045 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Di Nezza, E., Palatucci, G., Valdinoci, E.: Hitchhikers guide to the fractional Sobolev spaces. Bull. Sci. Math. 136, 521–573 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Evans, K.P., Jacob, N.: Feller semigroups obtained by variable order subordination. Rev. Math. Comput. 20(2), 293–307 (2007)

    MathSciNet  MATH  Google Scholar 

  12. Falconer, K.J., Lévy Véhel, J.: Multifractional, multistable, and other processes with prescribed local form. J. Theor. Probab. 22(2), 375–401 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Falconer, K.J., Liu, L.: Multistable processes and localisability. Stoch. Models 28, 503–526 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Garra, R., Polito, F., Orsingher, E.: State-dependent fractional point processes. J. Appl. Probab. 52, 18–36 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hoh, W.: A symbolic calculus for pseudo-differential operators generating Feller semigroups. Osaka J. Math. 35(4), 789–820 (1998)

    MathSciNet  MATH  Google Scholar 

  16. Hoh, W.: Pseudo differential operators generating Markov processes. Habilitationsschrift, Universität Bielefeld, Bielefeld (1998)

  17. Itô, K.: On stochastic processes. I. (Infinitely divisible laws of probability). Japan. J. Math. 18, 261–301 (1942)

    MathSciNet  MATH  Google Scholar 

  18. Jacob, N.: Pseudo-Differential Operators and Markov Processes, Vol I. Imperial College Press, London (2002)

    Book  MATH  Google Scholar 

  19. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, vol. 204. Elsevier Science B.V. (2006)

  20. Kim, P., Song, R., Vondraček, Z.: On the potential theory of one-dimensional subordinate Brownian motions with continuous components. Potential. Anal. 33, 153–173 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kim, P., Song, R., Vondraček, Z.: Potential theory of subordinate Brownian motions revisited. In: Stochastic Analysis and Applications to Finance Essays in Honour of Jia-an Yan. World Scientific, pp. 243–290 (2012)

  22. Kingman, J. F. C.: Poisson Processes. Oxford University Press (1993)

  23. Kochubei, A. N: General fractional calculus, evolution equations and renewal processes. Integr. Equa. Oper. Theory 71, 583–600 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kolokoltsov, V.N.: Markov processes, semigroups and generators. de Gruyter Studies in Mathematics, vol. 38. Walter de Gruyter & Co., Berlin (2011)

  25. Le Guével, R., Lévy Véhel, J.: A Ferguson-Klass-LePage series representation of multistable multifractional motions and related processes. Bernoulli 18(4), 1099–1127 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  26. Le Guével, R., Lévy Véhel, J., Liu, L.: On two multistable extensions of stable Lévy motion and their semi-martingale representations. J. Theor. Probab. 28 (3), 1125–1144 (2015)

    Article  MATH  Google Scholar 

  27. Meerschaert, M.M., Nane, E., Vellaisamy, P.: The fractional Poisson process and the inverse stable subordinator. Electron. J. Probab. 16(59), 1600–1620 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  28. Meerschaert, M.M., Scheffler, H.P.: Triangular array limits for continuous time random walks. Stoch. Process. Appl. 118(9), 1606–1633 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  29. Meerschaert, M. M, Sikorskii, A.: Stochastic models for fractional calculus. De Gruyter Studies in Mathematics, vol. 43 (2012)

  30. Meerschaert, M.M., Straka, P.: Inverse stable subordinators. Math. Model. Nat. Phenom. 8(2), 1–16 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  31. Metzler, R., Klafter, J.: The random walks guide to anomalous diffusion: A fractional dynamics approach. Phys. Rep. 339, 1–77 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  32. Metzler, R., Klafter, J.: The restaurant at the end of the random walk: Recent developments in the description of anomalous transport by fractional dynamics. J. Phys. A 339(37), R161–R208 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  33. Molchanov, I., Ralchenko, K.: Multifractional Poisson process, multistable subordinator and related limit theorems. Stat. Probab. Lett. 96, 95–101 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  34. Orsingher, E., Beghin, L.: Time-fractional telegraph equations and telegraph process with Brownian time. Probab. Theory Relat. Fields 128, 141–160 (2003)

    MathSciNet  MATH  Google Scholar 

  35. Orsingher, E., Beghin, L.: Fractional diffusion equations and processes with randomly varying time. Ann. Probab. 37(1), 206–249 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  36. Phillips, R.: On the generation of semigroups of linear operators. Pacific J. Math. 2, 343–369 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  37. Sato, K.: Lévy Processes and Infinitely Divisible Distributions. Cambridge University Press (1999)

  38. Schilling, R.L., Song, R., Vondraček, Z.: Bernštein functions: Theory and applications. Walter de Gruyter GmbH & Company KG, vol 37 of De Gruyter Studies in Mathematics Series (2010)

  39. Song, R., Vondraček, Z.: Potential theory of subordinate killed Brownian motion in a domain. Probab. Theory Relat. Fields 125, 578–592 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  40. Toaldo, B.: Convolution-type derivatives, hitting-times of subordinators and time-changed C 0-semigroups. Potent. Anal. 42(1), 115–140 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  41. Toaldo, B: Lévy mixing related to distributed order calculus, subordinators and slow diffusions. J. Math. Anal. Appl. 430(2), 1009–1036 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Toaldo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Orsingher, E., Ricciuti, C. & Toaldo, B. Time-Inhomogeneous Jump Processes and Variable Order Operators. Potential Anal 45, 435–461 (2016). https://doi.org/10.1007/s11118-016-9551-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11118-016-9551-4

Keywords

Mathematics Subject Classification (2010)

Navigation