Skip to main content
Log in

A Probabilistic Proof of the Fundamental Gap Conjecture Via the Coupling by Reflection

  • Published:
Potential Analysis Aims and scope Submit manuscript

An Erratum to this article was published on 14 January 2016

Abstract

Let \({\Omega }\subset \mathbb{R} ^{n}\) be a strictly convex domain with smooth boundary and diameter D. The fundamental gap conjecture claims that if \(V:\bar {\Omega }\to \mathbb{R} \) is convex, then the spectral gap of the Schrödinger operator −Δ+V with Dirichlet boundary condition is greater than \(\frac {3\pi ^{2}}{D^{2}}\). Using analytic methods, Andrews and Clutterbuck recently proved in (J. Amer. Math. Soc. 24(3), 889–916 2011) a more general spectral gap comparison theorem which implies this conjecture. In the first part of the current work, we shall give a probabilistic proof of their result via the coupling by reflection of the diffusion processes. Moreover, we also present in the second part a simpler probabilistic proof of the original conjecture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andrews, B., Clutterbuck, J.: Proof of the fundamental gap conjecture. J. Amer. Math. Soc. 24(3), 899–916 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ashbaugh, M.S., Benguria, R.: Optimal lower bound for the gap between the first two eigenvalues of one-dimensional Schrödinger operators with symmetric single-well potentials. Proc. Amer. Math. Soc. 105(2), 419–424 (1989)

    MathSciNet  MATH  Google Scholar 

  3. Bakry, D., Emery, M.: Diffusions hypercontractives, Séminaires de Probabilités XIX. Springer Lect. Notes Math. 1123, 177–206 (1985)

    Article  MathSciNet  Google Scholar 

  4. Brascamp, H.J., Lieb, E.H.: On extensions of the Brunn-Minkowski and Prékopa-Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation. J. Funct. Anal. 22(4), 366–389 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  5. Carlen, E.A.: Conservative diffusions. Commun. Math. Phys. 94, 293–315 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen, M.-F.: Eigenvalues, Inequalties, and Ergodic Theory. Probability and its Applications (New York). Springer–Verlag London, Ltd., London (2005)

    Google Scholar 

  7. Chen, M.-F., Li, S.-F.: Coupling methods for multidimensional diffusion processes. Ann. Probab. 17(1), 151–177 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen, M.-F., Wang, F.-Y.: Application of coupling method to the first eigenvalue on manifold. Sci. China Ser. A 37(1), 1–14 (1994)

    MathSciNet  MATH  Google Scholar 

  9. Chen, M.-F., Wang, F.-Y.: Estimation of spectral gap for elliptic operators. Trans. Amer. Math. Soc. 349(3), 1239–1267 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gong, F.-Z., Liu, Y., Liu, Y., Luo, D.-J: Spectral gaps of Schrödinger operators and diffusion operators on abstract Wiener space. J. Funct. Anal. 266, 5639–5675 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gross, L.: Logarithmic Sobolev inequalities. Amer. J. Math. 97, 1061–1083 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  12. He, Y.: Sharp lower bound of spectral gap for Schr¨odinger operator and related results. Front. Math. China. (2015). doi:10.1007/s11464-015-0455-1

  13. Hsu, E.P.: Stochastic analysis on manifolds. Graduate Studies in Mathematics, 38. American Mathematical Society, Providence, RI (2002)

    Google Scholar 

  14. Ikeda, N., Watanabe, S.: Stochastic differential equations and diffusion processes, 2nd. North-Holland Publishing Co. (1989)

  15. Lee, Ki-ahm., Vázquez, J.L.: Parabolic approach to nonlinear elliptic eigenvalue problems. Adv. Math. 219, 2006–2028 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lindvall, T., Rogers, L.C.G.: Coupling of multidimensional diffusions by reflection. Ann. Probab. 14(3), 860–872 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lu, Z.-Q.: Eigenvalue gaps (I), UCI PDE Learning Seminar, May 26, 2011. http://www.math.uci.edu/~zlu/talks2011-UCI-PDE/uci-pde-seminar-1.pdf

  18. Meyer, P.A., Zheng, W.A.: Construction de processus de Nelson réversibles. Séminaire de probabilités, XIX, 1983/84, 12–26, vol. 1123. Springer, Berlin (1985)

    Google Scholar 

  19. Van den Berg, M.: On condensation in the free-boson gas and the spectrum of the Laplacian. J. Statist. Phys. 31(3), 623–637 (1983)

    Article  MathSciNet  Google Scholar 

  20. Wang, F.-Y.: Logarithmic Sobolev inequalities: conditions and counterexamples. J. Oper. Theory 46(1), 183–197 (2001)

    MathSciNet  MATH  Google Scholar 

  21. Wang, F.-Y.: Gradient estimates and the first Neumann eigenvalue on manifolds with boundary. Stoch. Process Appl. 115, 1475–1486 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  22. Wang, F.-Y.: Second fundamental form and gradient of Neumann semigroups. J. Funct. Anal. 256, 3461–3469 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Yau, S.-T.: Nonlinear analysis in geometry. Monographies de L’Enseignement Mathématique, vol. 33, L’Enseignement Mathématique, Geneva, 1986. Série des Conférences de l’Union Mathématique Internationale, 8

  24. Yosida, K.: Functional analysis. Sixth edition. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 123. Springer-Verlag, Berlin-New York (1980)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dejun Luo.

Additional information

Partly supported by the Key Laboratory of RCSDS, CAS (2008DP173182), NSFC (11021161) and 973 Project (2011CB808000).

Partly supported by the NSFC (11401403) and the Australian Research Council (ARC) grant (DP130101302).

Partly supported by the Key Laboratory of RCSDS, CAS (2008DP173182), NSFC (11101407) and AMSS (Y129161ZZ1).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, F., Li, H. & Luo, D. A Probabilistic Proof of the Fundamental Gap Conjecture Via the Coupling by Reflection. Potential Anal 44, 423–442 (2016). https://doi.org/10.1007/s11118-015-9476-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11118-015-9476-3

Keywords

Mathematics Subject Classification (2010)

Navigation