Skip to main content
Log in

Bivariate Revuz Measures and the Feynman-Kac Formula on Semi-Dirichlet Forms

  • Published:
Potential Analysis Aims and scope Submit manuscript

Abstract

In this paper we shall first establish the theory of bivariate Revuz correspondence of positive additive functionals under a semi-Dirichlet form which is associated with a right Markov process X satisfying the sector condition but without duality. We extend most of the classical results about the bivariate Revuz measures under the duality assumptions to the case of semi-Dirichlet forms. As the main results of this paper, we prove that for any exact multiplicative functional M of X, the subprocess X M of X killed by M also satisfies the sector condition and we then characterize the semi-Dirichlet form associated with X M by using the bivariate Revuz measure, which extends the classical Feynman-Kac formula.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beznea, L., Boboc, N.: Weak duality and the dual process for a semi-Dirichlet form. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 9 (1), 27–46 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  2. Blumenthal, R.M., Getoor, R.K.: Markov processes and potential theory. Pure and Applied Mathematics, Vol. 29. Academic Press, New York-London (1968)

    Google Scholar 

  3. Chen, Z.Q., Ma, Z.M. , Röckner, M.: Quasi-homeomorphisms of Dirichlet forms. Nagoya Math. J. 136, 1–15 (1994)

    MATH  MathSciNet  Google Scholar 

  4. Chen, Z.Q., Fukushima, M. : Symmetric Markov Processes, Time Change, and Boundary Theory. London Mathematical Society Monographs Series, vol. 35. Princeton University Press, Princeton, NJ (2012)

    Google Scholar 

  5. Fitzsimmons, P.J., Getoor, R.K.: Revuz measures and time changes. Math. Z. 199 (2) (233)

  6. Fitzsimmons, P.J.: On the quasi-regularity of semi-Dirichlet forms. Potential Anal. 15 (3), 151–185 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  7. Fukushima, M., Oshima, Y., Takeda, M.: Dirichlet forms and symmetric Markov processes. Second revised and extended edition. de Gruyter Studies in Mathematics, 19. Walter de Gruyter & Co., Berlin (2011)

  8. Fukushima, M., Uemura, T.: Jump-type Hunt processes generated by lower bounded semi-Dirichlet forms. Ann. Probab. 40 (2), 858–889 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  9. Getoor, R.K.: Duality of Lévy systems. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 19, 257–270 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  10. Getoor, R.K.: Multiplicative functionals of dual processes. Ann. Inst. Fourier (Grenoble) 21 (2), 43–83 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  11. Getoor, R.K., Sharpe, M.J.: Naturality, standardness, and weak duality for Markov processes. Z. Wahrsch. Verw. Gebiete 67 (1), 1–62 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  12. Getoor, R.K. : Excessive measures. Probability and its Applications. Birkhäuser Boston, Inc., Boston, MA, (1990)

    Book  Google Scholar 

  13. Hu, Z.C. , Ma, Z.M. , Sun, W.: Extensions of Lévy-Khinchin formula and Beurling-Deny formula in semi-Dirichlet forms setting. J. Funct. Anal. 239 (1), 179–213 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  14. Hu, Z.C. , Ma, Z.M. : Beurling-Deny formula of semi-Dirichlet forms. C. R. Math. Acad. Sci. Paris 338 (7), 521–526 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  15. Ma, Z.M., Röckner, M.: Introduction to the theory of (non-symmetric) Dirichlet forms. Springer-Verlag, Berlin (1992)

    Book  MATH  Google Scholar 

  16. Ma, Z.M. , Overbeck, L., Rökner, M.: Markov processes associated with semi-Dirichlet forms. Osaka J. Math. 32 (1), 97–119 (1995)

    MATH  MathSciNet  Google Scholar 

  17. Li, M., Ma, Z.M. , Sun, W.: Fukushima’s decomposition for diffusions associated with semi-Dirichlet forms. Stoch. Dyn. 12 (4), 1250003, 31 (2012)

    MathSciNet  Google Scholar 

  18. Oshima, Y.: Semi-Dirichlet Forms and Markov Processes. De Gruyter Studies in Mathematics, vol. 48. Walter de Gruyter & Co., Berlin (2013)

    Book  Google Scholar 

  19. Revuz, D.: Mesures associées aux fonctionnelles additives de Markov I. Trans. Amer. Math. Soc. 148, 501–531 (1970)

    MATH  MathSciNet  Google Scholar 

  20. Revuz, D.: Mesures associées aux fonctionnelles additives de Markov. II. Z. Wahrscheinlichkeitstheorie undVerw. Gebiete 16, 336–344 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  21. Schilling, R.L., Wang, J.: Lower bounded semi-Dirichlet forms associated with Lévy type operators. in preparation (2012)

  22. Sharpe, M.J.: Exact multiplicative functionals in duality. Indiana Univ. Math. J. 21, 27–60 (1971/72)

  23. Sharpe, M.J.: General theory of Markov processes. Pure and Applied Mathematics, vol. 133. Academic Press, Inc., Boston, MA (1988)

    Google Scholar 

  24. Sugitani, S.: On dual multiplicative functionals. Proc. Japan Acad. 49, 239–242 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  25. Uemura, T.: On multidimensional diffusion processes with jumps. Osaka J. Math. to appear

  26. Ying, J.: Bivariate Revuz measures and the Feynman-Kac formula. Ann. Inst. H. Poincaré Probab. Statist. 32 (2), 251–287 (1996)

    MATH  Google Scholar 

  27. Ying, J.: Killing and subordination. Proc. Amer. Math. Soc. 124 (7), 2215–2222 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  28. Ying, J.: Revuz measures and related formulas on energy functional and capacity. Potential Anal. 8 (1), 1–19 (1998)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liping Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Ying, J. Bivariate Revuz Measures and the Feynman-Kac Formula on Semi-Dirichlet Forms. Potential Anal 42, 775–808 (2015). https://doi.org/10.1007/s11118-014-9457-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11118-014-9457-y

Keywords

Mathematics Subject Classification (2010)

Navigation