Skip to main content
Log in

Layer Potentials for the Harmonic Mixed Problem in the Plane

Potential Analysis Aims and scope Submit manuscript

Abstract

The mixed problem is to find a harmonic function having prescribed Dirichlet data on one part of the boundary and prescribed Neumann data on the remainder. One must make a choice as to the required boundary regularity of solutions. When only weak regularity conditions are imposed, the mixed problem has been solved on smooth domains in the plane by Wendland et al. (Math Methods Appl Sci 1(3):265–321, 1979). Significant advances were later made on Lipschitz domains by Ott and Brown (2011) and Brown (Commun Partial Differ Equ 19(7–8):1217–1233, 1994). The strain of requiring a square-integrable gradient on the boundary, however, forces a strong geometric restriction on the domain. Well-known counterexamples by Brown show this restriction to be a necessary condition. This paper shows that these counterexamples are an anomaly, in that the mixed problem in the plane can be solved for all data modulo a finite dimensional subspace. The geometric restriction now required is significantly less stringent than the one referred to above. This result is proved by representing solutions in terms of single and double layer potentials, establishing a mixed Rellich inequality, and applying functional analytic arguments to solve a two-by-two system of equations. These results are then extended to allow Robin data in place of Neumann data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Archibald, T.: Riemann and the theory of electrical phenomena: Nobili’s rings. Centaurus 34(3), 247–271 (1991). doi:10.1111/j.1600-0498.1991.tb00696.x

    Article  MathSciNet  MATH  Google Scholar 

  2. Azzam, A., Kreyszig, E.: On solutions of elliptic equations satisfying mixed boundary conditions. SIAM J. Math. Anal. 13(2), 254–262 (1982). doi:10.1137/0513018

    Article  MathSciNet  MATH  Google Scholar 

  3. Balsim, I., Neimark, M.A., Rumschitzki, D.S.: Harmonic solutions of a mixed boundary problem arising in the modeling of macromolecular transport into vessel walls. Comput. Math. Appl. 59(6), 1897–1908 (2010). doi:10.1016/j.camwa.2008.11.020

    Article  MathSciNet  MATH  Google Scholar 

  4. Brown, R.: The mixed problem for Laplace’s equation in a class of Lipschitz domains. Commun. Partial Differ. Equ. 19(7–8), 1217–1233 (1994). doi:10.1080/03605309408821052

    Article  MATH  Google Scholar 

  5. Brown, R.M., Mitrea, I.: The mixed problem for the Lamé system in a class of Lipschitz domains. J. Differ. Equ. 246(7), 2577–2589 (2009). doi:10.1016/j.jde.2009.01.008

    Article  MathSciNet  MATH  Google Scholar 

  6. Brown, R., Mitrea, I., Mitrea, M., Wright, M.: Mixed boundary value problems for the Stokes system. Trans. Am. Math. Soc. 362(3), 1211–1230 (2010). doi:10.1090/S0002-9947-09-04774-6

    Article  MathSciNet  MATH  Google Scholar 

  7. Cakoni, F., Hsiao, G.C., Wendland, W.L.: On the boundary integral equation method for a mixed boundary value problem of the biharmonic equation. Complex Var. Theory Appl. 50(7-11), 681–696 (2005). doi:10.1080/02781070500087394

    MathSciNet  MATH  Google Scholar 

  8. Coifman, R.R., McIntosh, A., Meyer, Y.: L’intégrale de Cauchy définit un opérateur borné sur L 2 pour les courbes lipschitziennes. Ann. Math. (2) 116(2), 361–387 (1982). doi:10.2307/2007065

    Article  MathSciNet  MATH  Google Scholar 

  9. Duffy, D.G.: Mixed boundary value problems. In: Chapman & Hall/CRC Applied Mathematics and Nonlinear Science Series. Chapman & Hall/CRC, Boca Raton (2008). doi:10.1201/9781420010947

    Google Scholar 

  10. Evans, G.C., Haskell, R.N.: The mixed problem for laplace’s equation in the plane discontinuous boundary values. Proc. Natl. Acad. Sci. U.S.A. 16(9), 620–625 (1930). URL http://www.jstor.org/stable/85356

    Article  MATH  Google Scholar 

  11. Folland, G.B.: Introduction to Partial Differential Equations, 2nd edn. Princeton University Press, Princeton (1995)

    MATH  Google Scholar 

  12. Garnett, J.B., Marshall, D.E.: Harmonic measure. In: New Mathematical Monographs, vol. 2. Cambridge University Press, Cambridge (2008). Reprint of the 2005 original

  13. Green, A.E., Zerna, W.: Theoretical Elasticity. Clarendon Press, Oxford (1954)

    MATH  Google Scholar 

  14. Jerison, D.S., Kenig, C.E.: Boundary value problems on Lipschitz domains. In: Studies in Partial Differential Equations, MAA Stud. Math., vol. 23, pp. 1–68. Math. Assoc. America, Washington, DC (1982)

  15. Lanzani, L., Shen, Z.: On the Robin boundary condition for Laplace’s equation in Lipschitz domains. Commun. Partial Differ. Equ. 29(1–2), 91–109 (2004). doi:10.1081/PDE-120028845

    MathSciNet  MATH  Google Scholar 

  16. Lanzani, L., Capogna, L., Brown, R.M.: The mixed problem in L p for some two-dimensional Lipschitz domains. Math. Ann. 342(1), 91–124 (2008). doi:10.1007/s00208-008-0223-6

    Article  MathSciNet  MATH  Google Scholar 

  17. Lieberman, G.M.: Mixed boundary value problems for elliptic and parabolic differential equations of second order. J. Math. Anal. Appl. 113(2), 422–440 (1986). doi:10.1016/0022-247X(86)90314-8

    Article  MathSciNet  MATH  Google Scholar 

  18. McLean, W.: Strongly Elliptic Systems and Boundary Integral Equations. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  19. Ott, K.A., Brown, R.M.: The mixed problem for the Laplacian in Lipschitz domains. Preprint (2011). Available on arXive, http://arxiv.org/abs/0909.0061v4

  20. Riemann, G.F.B.: Zur theorie der nobili’schen farbenringe (1855)

  21. Sneddon, I.N.: Mixed Boundary Value Problems in Potential Theory. North-Holland, Amsterdam (1966)

    MATH  Google Scholar 

  22. Venouziou, M., Verchota, G.C.: The mixed problem for harmonic functions in polyhedra of ℝ3. In: Perspectives in Partial Differential Equations, Harmonic Analysis and Applications, Proc. Sympos. Pure Math., vol. 79, pp. 407–423. Amer. Math. Soc., Providence (2008)

  23. Weber, H.: Ueber die besselschen functionen und ihre anwendung auf die theorie der elektrischen strome (1873)

  24. Wendland, W.L., Stephan, E., Hsiao, G.C.: On the integral equation method for the plane mixed boundary value problem of the Laplacian. Math. Methods Appl. Sci. 1(3), 265–321 (1979). doi:10.1002/mma.1670010302

    Article  MathSciNet  MATH  Google Scholar 

  25. Zaremba, S.: Sur un Probleme Mixte Relatif a l’Equation de Laplace. Bulletin de l’Academie des Sciences de Cracovie (1910)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moises Venouziou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Venouziou, M. Layer Potentials for the Harmonic Mixed Problem in the Plane. Potential Anal 38, 1259–1290 (2013). https://doi.org/10.1007/s11118-012-9315-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11118-012-9315-8

Keywords

Mathematics Subject Classifications (2010)

Navigation