Skip to main content
Log in

Universal Polynomial Expansions of Harmonic Functions

  • Published:
Potential Analysis Aims and scope Submit manuscript

Abstract

Let Ω be a domain in ℝN such that \(\left(\mathbb{R}^{N}\cup\lbrace\infty\rbrace\right)\setminus\Omega\) is connected. It is known that, for each w ∈ Ω, there exist harmonic functions on Ω that are universal at w, in the sense that partial sums of their homogeneous polynomial expansion about w approximate all plausibly approximable functions in the complement of Ω. Under the assumption that Ω omits an infinite cone, it is shown that the connectedness hypothesis on \(\left(\mathbb{R}^{N}\cup\lbrace\infty\rbrace\right)\setminus\Omega\) is essential, and that a harmonic function which is universal at one point is actually universal at all points of Ω.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Armitage, D.H.: Universal overconvergence of polynomial expansions of harmonic functions. J. Approx. Theory 118(2), 225–234 (2002)

    Article  MathSciNet  Google Scholar 

  2. Armitage, D.H., Gardiner, S.J.: Classical Potential Theory. Springer, London (2001)

    Book  MATH  Google Scholar 

  3. Bacharoglou, A., Stamatiou, G.: Universal harmonic functions on the hyperbolic space. Colloq. Math. 121(1), 93–105 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bayart, F., Grosse-Erdmann, K.-G., Nestoridis, V., Papadimitropoulos, C.: Abstract theory of universal series and applications. Proc. Lond. Math. Soc. (3) 96(2), 417–463 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Gauthier, P., Tamptse, I.: Universal overconvergence of homogeneous expansions of harmonic functions. Analysis 26(3), 287–293 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Hayman, W.K.: Power series expansions for harmonic functions. Bull. Lond. Math. Soc. 2, 152–158 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  7. Klimek, M.: Pluripotential Theory. Oxford Science, Oxford, UK (1991)

    MATH  Google Scholar 

  8. Korevaar, J., Meyers, J.L.H.: Logarithmic convexity for supremum norms of harmonic functions. Bull. Lond. Math. Soc. 26, 353–362 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  9. Luh, W.: Universal approximation properties of overconvergent power series on open sets. Analysis 6, 191–207 (1986)

    MathSciNet  MATH  Google Scholar 

  10. Manolaki, M.: Ostrowski-type theorems for harmonic functions. J. Math. Anal. Appl. 391, 480–488 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Melas, A., Nestoridis, V.: Universality of Taylor series as a generic property of holomorphic functions. Adv. Math. 157, 138–176 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  12. Müller, J., Yavrian, A.: On polynomial sequences with restricted growth near infinity. Bull. Lond. Math. Soc. 34, 189–199 (2002)

    Article  MATH  Google Scholar 

  13. Müller, J., Vlachou, V., Yavrian, A.: Universal overconvergence and Ostrowski-gaps. Bull. Lond. Math. Soc. 38, 597–606 (2006)

    Article  MATH  Google Scholar 

  14. Ransford, T.: Potential Theory in the Complex Plane. Cambridge University Press, Cambridge, UK (1995)

    Book  MATH  Google Scholar 

  15. Tamptse, I.: Approximation of harmonic functions by universal overconvergent series. PhD thesis, Univ. de Montreal (2008)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Myrto Manolaki.

Additional information

This research was supported by Science Foundation Ireland under Grant 09/RFP/MTH2149 and is also part of the programme of the ESF Network “Harmonic and Complex Analysis and Applications” (HCAA).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Manolaki, M. Universal Polynomial Expansions of Harmonic Functions. Potential Anal 38, 985–1000 (2013). https://doi.org/10.1007/s11118-012-9303-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11118-012-9303-z

Keywords

Mathematics Subject Classification (2010)

Navigation