Skip to main content
Log in

Equilibrium Problems for Infinite Dimensional Vector Potentials with External Fields

  • Published:
Potential Analysis Aims and scope Submit manuscript

Abstract

We consider a minimal energy problem with an external field over noncompact classes of infinite dimensional vector measures \((\mu^i)_{i\in I}\) on a locally compact space. The components μ i are positive measures normalized by \(\int g_i\,d\mu^i=a_i\) (where a i and g i are given) and supported by closed sets A i with the sign + 1 or − 1 prescribed such that A i  ∩ A j  = ∅ whenever \({\rm sign}\,A_i\ne{\rm sign}\,A_j\), and the law of interaction between μ i, i ∈ I, is determined by the matrix \(\bigl({\rm sign}\,A_i\,{\rm sign}\,A_j\bigr)_{i,j\in I}\). For positive definite kernels satisfying Fuglede’s condition of consistency, sufficient conditions for the existence of equilibrium measures are established and properties of their uniqueness, vague compactness, and strong and vague continuity are studied. Examples illustrating the sharpness of the sufficient conditions are provided. We also obtain variational inequalities for the weighted equilibrium potentials, single out their characteristic properties, and analyze continuity of the equilibrium constants. The results hold, e.g., for classical kernels in \(\mathbb R^n\), \(n\geqslant 2\), which is important in applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bourbaki, N.: Elements of Mathematics, General Topology, chapters 1–4. Springer, Berlin (1989)

    Book  MATH  Google Scholar 

  2. Bourbaki, N.: Elements of Mathematics, Integration, chapters 1–6. Springer, Berlin (2004)

    Book  Google Scholar 

  3. Brelot, M.: On Topologies and Boundaries in Potential Theory. Lectures Notes in Math., vol. 175. Springer, Berlin (1971)

  4. Cartan, H.: Théorie du potentiel Newtonien: énergie, capacité, suites de potentiels. Bull. Soc. Math. Fr. 73, 74–106 (1945)

    MATH  MathSciNet  Google Scholar 

  5. Choquet, G.: Theory of capacities. Ann. Inst. Fourier Grenoble 5, 131–295 (1953–1954)

    Article  MathSciNet  Google Scholar 

  6. De la Valée-Poussin, Ch.J.: Le Potentiel Logarithmique, Balayage et Répresentation Conforme. Louvain–Paris (1949)

  7. Deny, J.: Les potentiels d’énergie finite. Acta Math. 82, 107–183 (1950)

    Article  MATH  MathSciNet  Google Scholar 

  8. Deny, J.: Sur la définition de l’énergie en théorie du potentiel. Ann. Inst. Fourier Grenoble 2, 83–99 (1950)

    Article  MATH  MathSciNet  Google Scholar 

  9. Dragnev, P.D., Saff, E.B.: Riesz spherical potentials with external fields and minimal energy points separation. Potential Anal. 26, 139–162 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  10. Edwards, R.: Cartan’s balayage theory for hyperbolic Riemann surfaces. Ann. Inst. Fourier 8, 263–272 (1958)

    Article  MATH  Google Scholar 

  11. Edwards, R.: Functional Analysis. Theory and Applications. Holt. Rinehart and Winston, New York (1965)

  12. Frostman, O.: Potentiel d’équilibre et capacité des ensembles avec quelques applications à la théorie des fonctions. Comm. Sém. Math. Univ. Lund 3, 1–118 (1935)

    Google Scholar 

  13. Fuglede, B.: On the theory of potentials in locally compact spaces. Acta Math. 103, 139–215 (1960)

    Article  MATH  MathSciNet  Google Scholar 

  14. Fuglede, B.: Caractérisation des noyaux consistants en théorie du potentiel. Comptes Rendus 255, 241–243 (1962)

    MATH  MathSciNet  Google Scholar 

  15. Fuglede, B.: Asymptotic paths for subharmonic functions and polygonal connectedness of fine domains. In: Lectures Notes in Math., vol. 814, pp. 97–115. Springer, Berlin (1980)

    Google Scholar 

  16. Gauss, C.F.: Allgemeine Lehrsätze in Beziehung auf die im verkehrten Verhältnisse des Quadrats der Entfernung wirkenden Anziehungs—und Abstoßungs–Kräfte (1839). Werke 5, 197–244 (1867)

    Google Scholar 

  17. Gonchar, A.A., Rakhmanov, E.A.: On convergence of simultaneous Padé approximants for systems of functions of Markov type. Proc. Steklov Inst. Math. 157, 31–50 (1983)

    MATH  MathSciNet  Google Scholar 

  18. Gonchar, A.A., Rakhmanov, E.A.: Equilibrium measure and the distribution of zeros of extremal polynomials. Math. USSR-Sb. 53, 119–130 (1986)

    Article  MATH  Google Scholar 

  19. Gonchar, A.A., Rakhmanov, E.A.: On the equilibrium problem for vector potentials. Russ. Math. Surv. 40(4), 183–184 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  20. Harbrecht, H., Wendland, W.L., Zorii, N.: On Riesz minimal energy problems. Preprint Series Stuttgart Research Centre for Simulation Technology, no. 2010-81 (2010)

  21. Harbrecht, H., Wendland, W.L., Zorii, N.: Riesz minimal energy problems on C k − 1,1-manifolds. Preprint Series Stuttgart Research Centre for Simulation Technology (2012)

  22. Hayman, W.K.: Subharmonic Functions, vol. 2. Academic Press, London (1989)

    Google Scholar 

  23. Hayman, W.K., Kennedy, P.B.: Subharmonic Functions, vol. 1. Academic Press, London (1976)

    Google Scholar 

  24. Kelley, J.L.: General Topology. Princeton, New York (1957)

    Google Scholar 

  25. Landkof, N.S.: Foundations of Modern Potential Theory. Springer, Berlin (1972)

    Book  MATH  Google Scholar 

  26. Leja, F.: The Theory of Analytic Functions. Akad., Warsaw. In Polish (1957)

  27. Mhaskar, H.N., Saff, E.B.: Extremal problems for polynomials with exponential weights. Trans. Am. Math. Soc. 285, 204–234 (1984)

    Article  MathSciNet  Google Scholar 

  28. Moore, E.H., Smith, H.L.: A general theory of limits. Am. J. Math. 44, 102–121 (1922)

    Article  MATH  MathSciNet  Google Scholar 

  29. Nikishin, E.M., Sorokin, V.N.: Rational Approximations and Orthogonality. Translations of Mathematical Monographs, vol. 44. Amer. Math. Soc., Providence (1991)

    Google Scholar 

  30. Of, G., Wendland, W.L., Zorii, N.: On the numerical solution of minimal energy problems. Complex Variables and Elliptic Equations 55, 991–1012 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  31. Ohtsuka, M.: On potentials in locally compact spaces. J. Sci. Hiroshima Univ. Ser. A-1 25, 135–352 (1961)

    MATH  MathSciNet  Google Scholar 

  32. Saff, E.B., Totik, V.: Logarithmic Potentials with External Fields. Springer, Berlin (1997)

    MATH  Google Scholar 

  33. Zorii, N.: An extremal problem on the minimum of energy for space condensers. Ukr. Math. J. 38, 365–370 (1986)

    Article  MathSciNet  Google Scholar 

  34. Zorii, N.: A problem of minimum energy for space condensers and Riesz kernels. Ukr. Math. J. 41, 29–36 (1989)

    Article  MathSciNet  Google Scholar 

  35. Zorii, N.: A noncompact variational problem in Riesz potential theory. I. Ukr.Math. J. 47, 1541–1553 (1995)

    Article  MathSciNet  Google Scholar 

  36. Zorii, N.: A noncompact variational problem in Riesz potential theory. II. Ukr. Math. J. 48, 671–682 (1996)

    Article  MathSciNet  Google Scholar 

  37. Zorii, N.: Equilibrium potentials with external fields. Ukr. Math. J. 55, 1423–1444 (2003)

    Article  MathSciNet  Google Scholar 

  38. Zorii, N.: Equilibrium problems for potentials with external fields. Ukr. Math. J. 55, 1588–1618 (2003)

    Article  MathSciNet  Google Scholar 

  39. Zorii, N.: Necessary and sufficient conditions for the solvability of the Gauss variational problem. Ukr. Math. J. 57, 70–99 (2005)

    Article  MathSciNet  Google Scholar 

  40. Zorii, N.: Interior capacities of condensers in locally compact spaces. Potential Anal. 35, 103–143 (2011). doi:10.1007/s11118-010-9204-y

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalia Zorii.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zorii, N. Equilibrium Problems for Infinite Dimensional Vector Potentials with External Fields. Potential Anal 38, 397–432 (2013). https://doi.org/10.1007/s11118-012-9279-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11118-012-9279-8

Keywords

Mathematics Subject Classification (2010)

Navigation