Skip to main content
Log in

Providing traffic tolerance in optical packet switching networks: a reinforcement learning approach

  • Original Paper
  • Published:
Photonic Network Communications Aims and scope Submit manuscript

Abstract

The servitization of network resources leads to new challenges for optical networks. For instance, to provide on-demand lightpaths as a service while keeping the probability of packet loss (PPL) low, issues such as lightpath setting up, resource reservation and load balancing must be addressed. We present a self-adaptive framework to process lightpath requests on packet switching optical networks that considers and handles the aforementioned issues. The framework is composed of a dimensioning phase that adds up new resources to an initial topology and a learning phase based on reinforcement learning that provides self-adaptation to tolerate traffic changes. The framework is tested on three realistic mesh topologies achieving a PPL between \(1 \times 10^{-1}\) and \(1 \times 10^{-6}\) for different traffic loads. Compared to fixed multi-path routing strategies, our framework reduces PPL between \(19\%\) and up to \(80\%\). Furthermore, no packet loss can also be achieved for traffic loads equal to or lower than 0.4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Ammar, H., Tuyls, K., Kaisers, M.: Evolutionary Dynamics of Ant Colony Optimization. Multiagent System Technologies. Springer, Berlin (2012)

    Google Scholar 

  2. Aziz, K., Sarwar, S., Aleksic, S.: Dimensioning an optical packet-burst switch: more interconnections or more delay lines. In: International Conference on Optical Network Design and Modeling. 1–6 (2008)

  3. Bloembergen, D., Tuyls, K., Hennes, D., Kaisers, M.: Evolutionary dynamics of multi-agent learning: a survey. J. Artif. Intell. Res. 53, 659–697 (2015)

    MATH  MathSciNet  Google Scholar 

  4. Bootstrap percentile method. Online. http://mathworks.com/help/stats/prctile.html (2016). Accessed 02 Oct 2016

  5. Callegati, F., Cerroni, W., Raffaelli, C.: Routing techniques in optical packet-switched networks. In: 7th International Conference on Transparent Optical Networks 1, 175 – 178 (2005)

  6. Callegati, F., Cerroni, W., Raffaelli, C., Savi, M.: QoS differentiation in optical packet-switched networks. Comput. Commun. 29(7), 855–864 (2006). doi:10.1016/j.comcom.2005.08.007

    Article  Google Scholar 

  7. Callegati, F., Campi, A., Cerroni, W.: Automated transport service management in the future internet: concepts and operations. J. Internet Serv. Appl. 2, 69–79 (2011). doi:10.1007/s13174-011-0026-y

    Article  Google Scholar 

  8. Callegati, F., Cerroni, W., Campi, A.: Application scenarios for cognitive transport service in next-generation networks. Commun. Mag. 50(3), 62–69 (2012)

    Article  Google Scholar 

  9. Xy, C., Zhang, P., Zr, Z., Yq, H., Zb, L.: Fast light-path set-up protocol for optical flow switching. Optoelectron. Lett. 5(5), 368–371 (2009). doi:10.1007/s11801-009-9106-7

    Article  Google Scholar 

  10. Castañón, G., Tancevski, L., Tamil, L.: Optical packet switching with multiple path routing. J. Comput. Netw. ISDN Syst. Spec. Issue Opt. Netw. New Gener. Internet Data Commun. Syst. 32, 653–662 (2000)

    Google Scholar 

  11. Contreras, L., Lopez, V., De Dios, O., Tovar, A., Munoz, F., Azanon, A., Fernandez-Palacios, J., Folgueira, J.: Toward cloud-ready transport networks. IEEE Commun. Mag. 50(9), 48–55 (2012). doi:10.1109/MCOM.2012.6295711

    Article  Google Scholar 

  12. De Leenheer, M., Thysebaert, P., Volckaert, B., De Turck, F., Dhoedt, B., Demeester, P., Simeonidou, D., Nejabati, R., Zervas, G., Klonidis, D., O’Mahony, M.J.: A view on enabling-consumer oriented grids through optical burst switching. Commun. Mag. 44(3), 124–131 (2006)

    Article  Google Scholar 

  13. Gazi, B., Ghassemlooy, Z.: Dynamic buffer management using per-queue thresholds: Research articles. Int. J. Commun. Syst. 20, 571–587, (2007). doi:10.1002/dac.v20:5. http://portal.acm.org/citation.cfm?id=1238861.1238865

  14. Kiran, Y.V., Venkatesh, T., Murthy, C.S.R.: A reinforcement learning framework for path selection and wavelength selection in optical burst switched networks. IEEE J. Sel. Areas Commun. 25, 18–26 (2007)

    Article  Google Scholar 

  15. Klinkowski, M.: An evolutionary algorithm approach for dedicated path protection problem in elastic optical networks. Cybern. Syst. 44(6–7), 589–605 (2013)

  16. Laor, M., Gendel, L.: The effect of packet reordering in a backbone link on application throughput. IEEE Netw. 16(5), 28–36 (2002). doi:10.1109/MNET.2002.1035115

    Article  Google Scholar 

  17. Li, M., Cao, X., Xu, L., Zhang, P., Yuan, C., Peng, S., Li, Z.: A distributed fast light-path set-up protocol for grid over obs networks. In: Network and Parallel Computing, 2008. NPC 2008. IFIP International Conference on, pp 375–382, (2008). doi:10.1109/NPC.2008.25

  18. Pavani, G., Queiroz, A., Pellegrini, J.: Analysis of ant colony optimization-based routing in optical networks in the presence of byzantine failures. Inf. Sci. 340(C), 27–40 (2016). doi:10.1016/j.ins.2016.01.008

    Article  MathSciNet  Google Scholar 

  19. Pavon-Marino, P., Izquierdo-Zaragoza, J.: Lightpath bundling and anycast switching: a new paradigm for multilayer optical networks. IEEE Commun. Mag. 50(8), 89–95 (2012). doi:10.1109/MCOM.2012.6257532

    Article  Google Scholar 

  20. Piratla, N.M., Jayasumana, A.P.: Metrics for packet reordering-a comparative analysis. Int. J. Commun. Syst. 21(1), 99–113 (2008). doi:10.1002/dac.v21:1

    Article  Google Scholar 

  21. Razo-Zapata, I., Castanon, G., Mex-Perera, C.: Lightpath requests processing in flexible packet switching optical networks using reinforcement learning. In: Transparent Optical Networks (ICTON), 2013 15th International Conference on, pp 1–4, (2013). doi:10.1109/ICTON.2013.6602872

  22. Razo-Zapata, I., Castañón, G., Mex-Perera, C.: Self-healing in transparent optical packet switching mesh networks: A reinforcement learning perspective. Comput. Netw. 60(0), 129 – 146, (2014). doi:10.1016/j.bjp.2013.11.002. http://www.sciencedirect.com/science/article/pii/S1389128613003733

  23. Simeonidou, D., Nejabati, R., Zervas, G., Klonidis, D., Tzanakaki, A., O’Mahony, M.: Dynamic optical-network architectures and technologies for existing and emerging grid services. J. Lightwave Technol. 23(10), 3347–3357 (2005)

    Article  Google Scholar 

  24. Sterbenz, J.P., Hutchison, D., Cetinkaya, E.K., Jabbar, A., Rohrer, J.P., Scholler, M., Smith, P.: Resilience and survivability in communication networks: strategies, principles, and survey of disciplines. Comput. Netw. 54(8), 1245–1265 (2010). doi:10.1016/j.comnet.2010.03.005. (Resilient and Survivable networks)

    Article  MATH  Google Scholar 

  25. Sutton, R.S., Barto, A.G.: Reinforcement Learning. An Introduction. The MIT Press, Cambridge (1998)

    Google Scholar 

  26. Tan, C., Castañón, G., Chien, S., You, A., Low, A.: Buffering management schemes for optical variable length packets under limited packet sorting. Photon Netw. Commun. 12(3), 257–268 (2006). doi:10.1007/s11107-006-0029-y

    Article  Google Scholar 

  27. Youngseok, L., Mukherjee, B.: Traffic engineering in next-generation optical networks. IEEE Commun. Surv. Tutor. 6(3), 16–33 (2004). doi:10.1109/COMST.2004.5342291

    Article  Google Scholar 

  28. Yuang, M., Lee, S., Tien, P.L., Lin, Y.M., Shih, J., Tsai, F., Chen, A.: Optical coarse packet-switched ip-over-wdm network (opsinet): technologies and experiments. IEEE J. Sel. Areas Commun. 24(8), 117–127 (2006). doi:10.1109/JSAC.2006.1677259

    Article  Google Scholar 

  29. Zervas, G., Martini, V., Qin, Y., Escalona, E., Nejabati, R., Simeonidou, D., Baroncelli, F., Martini, B., Torkmen, K., Castoldi, P.: Service-oriented multigranular optical network architecture for clouds. IEEE/OSA J. Opt. Commun. Netw 2(10), 883–891 (2010)

    Article  Google Scholar 

  30. Zhu, Z., Lu, W., Zhang, L., Ansari, N.: Dynamic service provisioning in elastic optical network with hybrid single-multi-path routing. J. Lightwave Technol. 31(1), 15–22 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iván S. Razo-Zapata.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Razo-Zapata, I.S., Castañón, G. & Mex-Perera, C. Providing traffic tolerance in optical packet switching networks: a reinforcement learning approach. Photon Netw Commun 34, 307–322 (2017). https://doi.org/10.1007/s11107-017-0699-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11107-017-0699-7

Keywords

Navigation