Skip to main content

Advertisement

Log in

QoS-aware energy-saving mechanism for hybrid optical-wireless broadband access networks

  • Original Paper
  • Published:
Photonic Network Communications Aims and scope Submit manuscript

Abstract

Hybrid optical-wireless broadband access network (HOWBAN) takes full advantage of the high capacity and reliability of the passive optical network and the flexibility, ubiquity of the wireless network. Similar to other access networks, the issue of high energy consumption is a great challenge for HOWBAN. In HOWBAN, optical network units (ONUs) consume a great amount of energy. The sleep of ONUs can greatly improve the energy efficiency of HOWBAN. However, the quality of service (QoS) will be decreased while the packets are waiting in ONUs and optical line terminal. In this paper, we propose a QoS-aware energy-saving mechanism. A dynamic bandwidth allocation mechanism is designed to guarantee the QoS, where different priorities are considered. Meanwhile, we employ different sleep strategies by taking different priorities’ tolerant delays into account to prolong the sleep time of ONUs. Then, based on the evaluation of packet delay, the optimal sleep parameter is derived to maximum the energy efficiency. In addition, a load balancing and resource allocation mechanism is adopted in the wireless domain to reduce the delay and congestion caused by ONUs’ sleep. Results show that the proposed mechanism can effectively improve the energy efficiency and meet the QoS requirements of packets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Zhou, H., Mao, S., Agrawal, P.: Optical power allocation for adaptive transmissions in wavelength-division multiplexing free space optical networks. Digital Commun. Netw. 1(3), 171–180 (2015)

    Article  Google Scholar 

  2. Peng, M., Li, Y., Jiang, J., Li, J., Wang, C.: Heterogeneous cloud radio access networks: a new perspective for enhancing spectral and energy efficiencies. IEEE Wirel. Commun. 21(6), 126–135 (2014)

    Article  Google Scholar 

  3. Luo, C., Guo, S., Guo, S., Yang, L., Min, G., Xie, X.: Green communication in energy renewable wireless mesh networks: routing, rate control, and power allocation. IEEE Trans. Parallel Distrib. Syst. 25(12), 3211–3220 (2014)

    Article  Google Scholar 

  4. Shaddad, R.Q., Mohammad, A.B., Al-Gailani, S.A., Al-Hetar, A.M., Elmagzoub, M.A.: A survey on access technologies for broadband optical and wireless networks. J. Netw. Comput. Appl. 41(5), 459–472 (2014)

    Article  Google Scholar 

  5. Sarigiannidis, A.G., Iloridou, M., Nicopolitidis, P., Papadimitriou, G., Pavlidou, F.N., Sarigiannidis, P.G., Louta, M.D., Vitsas, V.: Architectures and bandwidth allocation schemes for hybrid wireless-optical networks. IEEE Commun. Surv. Tutor. 17(1), 427–468 (2015)

    Article  Google Scholar 

  6. Zhang, Z., Yi, Y., Yang, J., Jing, X.: Energy efficiency based on joint mobile node grouping and data packet fragmentation in short-range communication system. Int. J. Commun. Syst. 27(4), 534–550 (2014)

    Article  Google Scholar 

  7. Wu, D.P., He, J., Wang, H.G., Wang, C.G., Wang, R.Y.: A hierarchical packet forwarding mechanism for energy harvesting wireless sensor networks. IEEE Commun. Mag. 53(8), 92–98 (2015)

    Article  Google Scholar 

  8. Valcarenghi, L., Van, D.P., Raponi, P.G., Castoldi, P., Campelo, D.R., Wong, S., Yen, S., Kazovsky, L.G., Yamashita, S.: Energy efficiency in passive optical networks: where, when, and how. IEEE Netw. 26(6), 61–68 (2012)

    Article  Google Scholar 

  9. Li, Y., Liao, C., Wang, Y., Wang, C.: Energy-efficient optimal relay selection in cooperative cellular networks based on double auction. IEEE Trans. Wirel. Commun. 14(8), 4093–4104 (2015)

    Article  Google Scholar 

  10. Chowdhury, P., Tornatore, M., Sarkar, S., Mukherjee, B.: Building a green wireless-optical broadband access network (WOBAN). J. Lightw. Technol. 28(16), 2219–2229 (2010)

    Article  Google Scholar 

  11. Dhaini, A.R., Ho, P.H., Shen, G.: Toward green next-generation passive optical networks. IEEE Commun. Mag. 49(11), 94–101 (2011)

    Article  Google Scholar 

  12. Kantarci, B., Mouftah, H.T.: Towards energy-efficient hybrid fiber-wireless access networks. In: Proceedings of ICTON, pp. 1–4 (2011)

  13. Schütz, G., Correia, N.: Design of QoS-aware energy-efficient fiber–wireless access networks. J. Opt. Commun. Netw. 4(8), 586–594 (2012)

    Article  Google Scholar 

  14. Liu, X., Ghazisaidi, N., Ivanescu, L., Kang, R.: On the tradeoff between energy saving and QoS support for video delivery in EEE-based FiWi networks using real-world traffic traces. J. Lightw. Technol. 29(18), 2670–2676 (2011)

    Article  Google Scholar 

  15. Shi, L., Mukherjee, B., Lee, S.S.: Energy-efficient PON with sleep-mode ONU: progress, challenges, and solutions. IEEE Netw. 26(2), 36–41 (2012)

    Article  Google Scholar 

  16. Sarkar, S., Yen, H.H., Dixit, S., Mukherjee, B.: A novel delay-aware routing algorithm (DARA) for a hybrid wireless-optical broadband access network (WOBAN). IEEE Netw. 22(3), 20–28 (2008)

    Article  Google Scholar 

  17. Bertsekas, D.P., Gallager, R.G., Humblet, P.: Data Networks. Prentice-Hall, Upper Saddle River (1992)

    MATH  Google Scholar 

  18. Hiertz, G.R., Max, S., Zhao, R., Denteneer, D., Berlemann, L.: Principles of IEEE 802.11s. In: Proceedings of International Conference on Computer Communications and Networks, pp. 1002–1007 (2007)

  19. Hiertz, G.R., Denteneer, D., Max, S., Taori, R., Cardona, J., Berlemann, L., Walke, B.: IEEE 802.11s: the WLAN mesh standard. IEEE Wirel. Commun. 17(1), 104–111 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported in part by the Natural Science Foundation of China (61371097, 61271261), Youth Talents Training Project of Chongqing Science and Technology Commission (CSTC2014KJRC-QNRC40001), Program for Innovation Team Building at Institutions of Higher Education in Chongqing (CXTDX201601020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dapeng Wu.

Appendix

Appendix

The detailed process of the DGM (1, 1) is as follows:

Step 1 Accumulated generating operation

The sequence of the previous n slots’ average loads for ONU i is expressed as follows:

$$\begin{aligned} X^{\left( 0 \right) }=\left\{ {x^{\left( 0 \right) }\left( 1 \right) ,x^{\left( 0 \right) }\left( 2 \right) ,\ldots ,x^{\left( 0 \right) }\left( n \right) } \right\} \end{aligned}$$
(33)

Making one accumulated generating operation (1-AGO)

$$\begin{aligned} X^{\left( 1 \right) }=\left\{ {x^{\left( 1 \right) }\left( 1 \right) ,x^{\left( 1 \right) }\left( 2 \right) ,\ldots ,x^{\left( 1 \right) }\left( n \right) } \right\} \end{aligned}$$
(34)

where \(x^{\left( 1 \right) }\left( k \right) =\sum \nolimits _{i=1}^k {x^{\left( 0 \right) }} \left( i \right) ,\quad k=1,2,\ldots ,n\).

1-AGO makes any nonnegative, fluctuant and nonfluctuant column translate to nondecreasing and increasing column, which weakens the randomness and strengthens the regularity.

Step 2 Establishment of DGM (1, 1)

The DGM (1, 1) mode is established as follows:

$$\begin{aligned} x^{\left( 1 \right) }\left( {k+1} \right) =\beta _1 x^{\left( 1 \right) }\left( k \right) +\beta _2 \end{aligned}$$
(35)

Step 3 Solutions of parameters

Let \(\hat{{\beta }}=\left[ {\beta _1 ,\beta _2 } \right] ^{T}\) be the parameter column, and

$$\begin{aligned} Y=\left[ {\begin{array}{l} x^{\left( 1 \right) }\left( 2 \right) \\ x^{\left( 1 \right) }\left( 3 \right) \\ \vdots \\ x^{\left( 1 \right) }\left( n \right) \\ \end{array}} \right] ,\quad B=\left[ {\begin{array}{ll} {x^{\left( 1 \right) }\left( 1 \right) }&{}\quad {1} \\ {x^{\left( 1 \right) }\left( 2 \right) }&{}\quad {1} \\ {\vdots }&{}\quad {\vdots } \\ {x^{\left( 1 \right) }\left( {n-1} \right) }&{}\quad 1 \\ \end{array}} \right] \end{aligned}$$
(36)

Then, we can get

$$\begin{aligned} \hat{{\beta }}=\left( {B^{T}B} \right) ^{-1}\,B^{T}Y=\left[ {\begin{array}{l} \beta _1 \\ \beta _2 \\ \end{array}} \right] \end{aligned}$$
(37)

Substituting Y and B into Eq. (37), \(\beta _1 ,\beta _2\) are given by

$$\begin{aligned} \beta _1= & {} \frac{\sum \nolimits _{k=1}^{n-1} {x^{\left( 1 \right) }\left( {k+1} \right) } \cdot x^{\left( 1 \right) }\left( k \right) -\frac{1}{n-1}\cdot \sum \nolimits _{k=1}^{n-1} {x^{\left( 1 \right) }\left( {k+1} \right) } \cdot \sum \nolimits _{k=1}^{n-1} {x^{\left( 1 \right) }\left( k \right) } }{\sum \nolimits _{k=1}^{n-1} {\left[ {x^{\left( 1 \right) }\left( k \right) } \right] ^{2}-\frac{1}{n-1}\left[ {\sum \nolimits _{k=1}^{n-1} {x^{\left( 1 \right) }\left( k \right) } } \right] } ^{2}}\nonumber \\ \end{aligned}$$
(38)
$$\begin{aligned} \beta _2= & {} \frac{1}{n-1}\cdot \left[ {\sum \limits _{k=1}^{n-1} {x^{\left( 1 \right) }\left( {k+1} \right) -\beta _1 \sum \limits _{k=1}^{n-1} {x^{\left( 1 \right) }\left( k \right) } } } \right] \end{aligned}$$
(39)

Step 4 Acquirement of prediction equation

Substituting \(\beta _1 ,\beta _2\) into Eq. (35), then the recurrence function of DGM (1, 1) is obtained as follows

$$\begin{aligned} \hat{{x}}^{\left( 1 \right) }\left( {k+1} \right) =\beta _1^k x^{\left( 0 \right) }\left( 1 \right) +\frac{\left( {1-\beta _1^k } \right) \beta _2 }{1-\beta _1 },\quad k=1,2,\ldots ,n-1 \end{aligned}$$
(40)

The prediction equation is obtained by inverse 1-AGO as

$$\begin{aligned} \hat{{x}}^{\left( 0 \right) }\left( {k+1} \right) =\hat{{x}}^{\left( 1 \right) }\left( {k+1} \right) -\hat{{x}}^{\left( 1 \right) }\left( k \right) ,\quad k=1,2,\ldots ,n-1 \end{aligned}$$
(41)

where \(\hat{{x}}^{\left( 0 \right) }\left( {k+1} \right) \) is the predicted value of ONU i’s average load in the next slot.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, R., Liang, A., Zhou, C. et al. QoS-aware energy-saving mechanism for hybrid optical-wireless broadband access networks. Photon Netw Commun 34, 170–180 (2017). https://doi.org/10.1007/s11107-017-0690-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11107-017-0690-3

Keywords

Navigation