Skip to main content

Advertisement

Log in

Application of photonic crystal ring resonator nonlinear response for full-optical tunable add–drop filtering

  • Original Paper
  • Published:
Photonic Network Communications Aims and scope Submit manuscript

Abstract

In this paper, we investigate the application of Kerr-like nonlinear photonic crystal (PhC) ring resonator (PCRR) for realizing a tunable full-optical add–drop filter. We used silicon (Si) nano-crystal as the nonlinear material in pillar-based square lattice of a 2DPhC. The nonlinear section of PCRR is studied under three different scenarios: (1) first only the inner rods of PCRR are made of nonlinear materials, (2) only outer rods of PCRR have nonlinear response, and (3) both of inner and outer rods are made of nonlinear material. The simulation results indicate that optical power required to switch the state of PCRR from turn-on to turn-off, for the nonlinearity applied to inner PCRR, is at least \(2000\, \hbox {mW}{/}\upmu \hbox {m}^{2}\) and, for the nonlinearity applied to outer PCRR, is at least \(3000\, \hbox {mW}{/}\upmu \hbox {m}^{2}\) which corresponds to refractive index change of \(\Delta n_\mathrm{NL }= 0.085\) and \(\Delta n_\mathrm{NL }= 0.15\), respectively. For nonlinear tuning of add–drop filter, the minimum power required to 1 nm redshift the center operating wavelength \((\lambda _{0} = 1550\, \hbox {nm})\) for the inner PCRR scenario is \(125\, \hbox {mW}{/}\upmu \hbox {m}^{2}\) (refractive index change of \(\Delta n_\mathrm{NL}= 0.005)\). Maximum allowed refractive index change for inner and outer scenarios before switch goes to saturation is \(\Delta n_\mathrm{NL }= 0.04\) (maximum tune-ability 8 nm) and \(\Delta n_\mathrm{NL }= 0.012\) (maximum tune-ability of 24 nm), respectively. Performance of add–drop filter is replicated by means of finite-difference time-domain method, and simulations displayed an ultra-compact size device with ultra-fast tune-ability speed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Inoue, K., Ohtaka, K.: Photonic Crystals: Physics, Fabrication and Applications. Springer, Berlin (2004)

    Book  Google Scholar 

  2. Tavousi, A., Mansouri-Birjandis, M.A.: Study on the similarity of photonic crystal ring resonator cavity modes and whispering gallery-like modes in order of designing more efficient optical power dividers. Photonic Netw. Commun. 32, 160–170 (2016)

    Article  Google Scholar 

  3. Tavousi, A., Mansouri-Birjandi, M.A., Saffari, M.: Successive approximation-like 4-bit full-optical analog-to-digital converter based on Kerr-like nonlinear photonic crystal ring resonators. Phys. E Low Dimens. Syst. Nanost. 83, 101–106 (2016)

    Article  Google Scholar 

  4. Sun, H.-B., Matsuo, S., Misawa, H.: Three-dimensional photonic crystal structures achieved with two-photon-absorption photopolymerization of resin. Appl. Phys. Lett. 74, 786–788 (1999)

    Article  Google Scholar 

  5. Zhang, X.-D.: Negative refraction and focusing of electromagnetic wave through two-dimensional photonic crystals. Front. Phys. China 1, 396–404 (2006)

    Article  Google Scholar 

  6. Baba, T.: Photonic crystals: remember the light. Nat. Photonics 1, 11–12 (2007)

    Article  Google Scholar 

  7. Tavousi, A., Mansouri-Birjandi, M.A.: Performance evaluation of photonic crystal ring resonators based optical channel add–drop filters with the aid of whispering gallery modes and their Q-factor. Opt. Quantum Electron. 47, 1–13 (2014)

    Google Scholar 

  8. Chen, T., Liu, P., Liu, J., Hong, Z.: A terahertz photonic crystal cavity with high Q-factors. Appl. Phys. B 115, 105–109 (2014)

    Article  Google Scholar 

  9. Ozbay, E., Michel, E., Tuttle, G., Biswas, R., Ho, K., Bostak, J., et al.: Terahertz spectroscopy of three-dimensional photonic band-gap crystals. Opt. Lett. 19, 1155–1157 (1994)

    Article  Google Scholar 

  10. Tavousi, A., Rostami, A., Rostami, G., Dolatyari, M.: 3-D numerical analysis of Smith–Purcell-based terahertz wave radiation excited by effective surface plasmon. J. Lightwave Technol 33, 4640–4647 (2015)

    Article  Google Scholar 

  11. Rakhshani, M., Mansouri-Birjandi, M.: Heterostructure four channel wavelength demultiplexer using square photonic crystals ring resonators. J. Electromagn. Waves Appl. 26, 1700–1707 (2012)

    Article  Google Scholar 

  12. Rakhshani, M.R., Mansouri-Birjandi, M.A.: Design and simulation of wavelength demultiplexer based on heterostructure photonic crystals ring resonators. Phys. E Low Dimens. Syst. Nanostruct. 50, 97–101 (2013)

    Article  Google Scholar 

  13. Wang, Q., Ouyang, Z., Zheng, Y., Lin, M., Zheng, G.: Broadband six-port circulator based on magneto-optical-rod ring in photonic crystal. Appl. Phys. B 121, 385–389 (2015)

    Article  Google Scholar 

  14. Li, J.: Terahertz wave narrow bandpass filter based on photonic crystal. Opt. Commun. 283, 2647–2650 (2010)

    Article  Google Scholar 

  15. Soon, B.Y., Haus, J., Scalora, M., Sibilia, C.: One-dimensional photonic crystal optical limiter. Opt. Express 11, 2007–2018 (2003)

    Article  Google Scholar 

  16. Ghadrdan, M., Mansouri-Birjandi, M.A.: Concurrent implementation of all-optical half-adder and AND & XOR logic gates based on nonlinear photonic crystal. Opt. Quantum Electron. 45, 1027–1036 (2013)

    Article  Google Scholar 

  17. Rostami, A., Rostami, G.: Full optical analog to digital (A/D) converter based on Kerr-like nonlinear ring resonator. Opt. Commun. 228, 39–48 (2003)

    Article  Google Scholar 

  18. Gong, Q.-H., Hu, X.-Y.: Ultrafast photonic crystal optical switching. Front. Phys. China 1, 171–177 (2006)

    Article  Google Scholar 

  19. Liu, Y., Qin, F., Zhou, F., Meng, Q.-B., Zhang, D.-Z., Li, Z.-Y.: Ultrafast optical switching in Kerr nonlinear photonic crystals. Front. Phys. China 5, 220–244 (2010)

    Article  Google Scholar 

  20. Fang, Y.-T., Zhou, J., Pun, E.: High-Q filters based on one-dimensional photonic crystals using epsilon-negative materials. Appl. Phys. B 86, 587–591 (2007)

    Article  Google Scholar 

  21. Djavid, M., Abrishamian, M.S.: Multi-channel drop filters using photonic crystal ring resonators. Optik Int. J. Light Electron Opt. 123, 167–170 (2012)

    Article  Google Scholar 

  22. Monifi, F., Djavid, M., Ghaffari, A., Abrishamian, M.: A New Bandstop Filter Based on Photonic Crystals. Proc. PIER, Cambridge (2008)

    Google Scholar 

  23. Suh, W., Fan, S.: All-pass transmission or flattop reflection filters using a single photonic crystal slab. Appl. Phys. Lett. 84, 4905–4907 (2004)

    Article  Google Scholar 

  24. Mansouri-Birjandi, M.A., Moravvej-farshi, M.K., Rostami, A.: Ultra-fast low threshold all-optical switch implemented by arrays of ring resonators coupled to a Mach–Zehnder interferometer arm: based on 2D- photonic crystals. Appl. Opt. 47, 5041–5050 (2008)

    Article  Google Scholar 

  25. Kopperschmidt, P.: Tunable band gaps in electro-optical photonic bi-oriented crystals. Appl. Phys. B 73, 717–720 (2001)

    Article  Google Scholar 

  26. Cuesta-Soto, F., Martinez, A., Garcia, J., Ramos, F., Sanchis, P., Blasco, J., et al.: All-optical switching structure based on a photonic crystal directional coupler. Opt. Express 12, 161–167 (2004)

    Article  Google Scholar 

  27. Bristow, A., Wells, J.-P., Fan, W., Fox, A., Skolnick, M., Whittaker, D., et al.: Ultrafast nonlinear response of AlGaAs two-dimensional photonic crystal waveguides. Appl. Phys. Lett. 83, 851–853 (2003)

    Article  Google Scholar 

  28. Raineri, F., Cojocaru, C., Monnier, P., Levenson, A., Raj, R., Seassal, C., et al.: Ultrafast dynamics of the third-order nonlinear response in a two-dimensional InP-based photonic crystal. Appl. Phys. Lett. 85, 1880 (2004)

    Article  Google Scholar 

  29. Prakash, G.V., Cazzanelli, M., Gaburro, Z., Pavesi, L., Iacona, F., Franzo, G., et al.: Nonlinear optical properties of silicon nanocrystals grown by plasma-enhanced chemical vapor deposition. J. Appl. Phys. 91, 4607–4610 (2002)

    Article  Google Scholar 

  30. Taflove, A., Hagness, S.C.: Computational Electrodynamics, vol. 160. Artech House, Boston (2000)

    MATH  Google Scholar 

  31. Boriskin, A.V., Boriskina, S.V., Rolland, A., Sauleau, R., Nosich, A.I.: Test of the FDTD accuracy in the analysis of the scattering resonances associated with high-Q whispering-gallery modes of a circular cylinder. JOSA A 25, 1169–1173 (2008)

    Article  Google Scholar 

  32. Hodgson, N., Weber, H.: Optical resonators: fundamentals, advanced concepts, applications, vol. 108. Springer, Berlin (2005)

    Google Scholar 

  33. Ilchenko, V.S., Matsko, A.B.: Optical resonators with whispering-gallery modes-part II: applications. IEEE J. Sel. Top. Quantum Electron. 12, 15–32 (2006)

    Article  Google Scholar 

  34. Soljacic, M., Joannopoulos, J.: Enhancement of nonlinear effects using photonic crystals. Nat. Mater. 3, 211–219 (2004)

    Article  Google Scholar 

  35. Saleh, B.E., Teich, M.C., Saleh, B.E.: Fundamentals of Photonics, vol. 22. Wiley, New York (1991)

    Book  Google Scholar 

  36. Tavousi, A., Mansouri-birjandi, M.A., saffari, M.: Add-drop and channel-drop optical filters based on photonic crystal ring resonators. Int. J. Commun. Inf. Technol. (IJCIT) 2, 19–24 (2012)

    Google Scholar 

  37. Qiang, Z., Zhou, W., Soref, R.A.: Optical add–drop filters based on photonic crystal ring resonators. Opt. Express 15, 1823–1831 (2007)

    Article  Google Scholar 

  38. Andalib, P., Granpayeh, N.: All-optical ultracompact photonic crystal AND gate based on nonlinear ring resonators. JOSA B 26, 10–16 (2009)

    Article  Google Scholar 

  39. Koos, C., Jacome, L., Poulton, C., Leuthold, J., Freude, W.: Nonlinear silicon-on-insulator waveguides for all-optical signal processing. Opt. Express 15, 5976–5990 (2007)

    Article  Google Scholar 

  40. Uchiyama, K., Kawanishi, S., Saruwatari, M.: Multiple-channel output all-optical OTDM demultiplexer using XPM-induced chirp compensation (MOXIC). Electron. Lett. 34, 575–576 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Ali Mansouri-Birjandi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tavousi, A., Mansouri-Birjandi, M.A., Ghadrdan, M. et al. Application of photonic crystal ring resonator nonlinear response for full-optical tunable add–drop filtering. Photon Netw Commun 34, 131–139 (2017). https://doi.org/10.1007/s11107-016-0680-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11107-016-0680-x

Keywords

Navigation