Skip to main content

Advertisement

Log in

System-level modeling and performance evaluation of multistage optical network on chips (MONoCs)

  • Original Paper
  • Published:
Photonic Network Communications Aims and scope Submit manuscript

Abstract

With the number of CPU cores on a processor chip increasing rapidly, conventional electronic interconnects for core-to-core communication have run into a bottleneck. Recently, rapid development has been achieved for photonic technologies, which makes optical network on chip become an emerging solution to breakthrough electronic interconnect limitations. Multistage optical network on chips (MONoCs), by adopting multiple stages in the architecture, have great potentials to achieve the advantages of energy efficiency, high performance and scalability. To benefit from these advantages, we design a novel system-level model for MONoCs, which allows us to evaluate the performance by modeling and analyzing the latency, loss and crosstalk. The model is validated by simulation, which demonstrates that we can identify and predict some potential problems, such as latency jitter and asymmetry insertion loss distribution. Results show that our proposed model can provide insightful guidance for designing multistage optical network on chip.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Xu, Q., Manipatruni, S., Schmidt, B.: 12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators. Opt. Express 15(2), 430–436 (2007)

    Article  Google Scholar 

  2. 192-core CSX700 processor: http://www.clearspeed.com/products/csx700.php (2012)

  3. International Technology Roadmap for Semiconductors (ITRS): http://www.itrs.net/

  4. Silicon Integrated Nanophotonic, http://researcher.ibm.com/researcher/view_project.php?id=2757; IBM Lights Up Silicon Nanophotonics for Big Data, http://www.datacenterknowledge.com/archives/2012/12/12/ibm-lights-up-silicon-nanophotonics-for-big-data/ (2012)

  5. Feng, L., Ayache, M., Huang, J., Xu, Y., Lu, M., Chen, Y., Fainman, Y., Scherer, A.: Nonreciprocal light propagation in a silicon photonic circuit. Science 333, 729–733 (2011)

    Article  Google Scholar 

  6. Liang, D., Bowers, J.: Recent progress in lasers on silicon. Nat. Photonics 4, 511–517 (2010)

    Article  Google Scholar 

  7. Batten, C. et al.: Designing chip-level nanophotonic interconnection networks. IEEE J. Emerg. Sel. Topics Circuits Syst. 2(2), 137–153 (2012)

  8. Liang, D.: Hybrid integrated platforms for silicon photonics. Materials 3(3), 1782–1802 (2010)

    Article  Google Scholar 

  9. Biberman, A., Lee, B., Droz, N., Lipson, M., Bergman, K.: Broadband operation of nanophotonic router for silicon photonic networks-on-chip. IEEE Photonics Technol. Lett. 22(12), 926–928 (2010)

    Article  Google Scholar 

  10. Lindenmann, N., Balthasar, G., Hillerkuss, D., Schmogrow, R., Jordan, M., Leuthold, J., Freude, W., Koos, C.: Photonic wire bonding: a novel concept for chip-scale interconnects. Opt. Express 20, 17667–17677 (2012)

    Article  Google Scholar 

  11. Shacham, A., Bergman, K., Carloni, L.: Photonic networks-on-chip for future generations of chip multiprocessors. IEEE Trans. Comput. 57(9), 1246–1260 (2008)

    Article  MathSciNet  Google Scholar 

  12. ITRS summer conference public presentations. http://www.itrs.net/Links/2012Winter/1205%20Presentation/Interconnect_12052012.pdf

  13. Ye, Y., Xu, J., Wu, X., Zhang, W., Liu, W., Nikdast, M.: A Torus-based hierarchical optical-electronic network-on-chip for multiprocessor system-on-chip. ACM J. Emerg. Technol. Comput. Syst. 8(1), 182–189 (2012)

    Article  Google Scholar 

  14. Li, Z., Mohamed, M., Chen, X., Zhou, H., Mickelson, A., Shang, L., Vachharajani, M.: Iris: a hybrid nanophotonic network design for high-performance and low-power on-chip communication. ACM J. Emerg. Technol. Comput. Syst. 7(2), 8 (2011)

    Article  Google Scholar 

  15. Gu, H., Xu, J., Wang, Z.: A novel optical mesh network- on-chip for gigascale systems-on-chip. In: Proceedings of the IEEE Asia Pacific Conference on Circuits and Systems, pp. 1728–1731, (2008)

  16. Gu, H., Xu, J., Wang, Z.: Design of sparse Mesh for optical network on chip. In: Proceedings of IEEE Asia Pacific Optical Communications (APOC) (2008)

  17. Gu, H., Xu, J.: Design of 3D optical network on chip. In: Proceedings of International Symposium on Photonics and Optoelectronics (SOPO), pp. 771–774 (2009)

  18. Gu, H., Wang, S., Yang, Y., Xu, J.: Design of butterfly-fat-tree optical network-on-chip. Opt. Eng. 49(9), 662–662 (2010)

    Article  Google Scholar 

  19. Gu, H., Xu, J., Zhang, W.: A low-power fat tree-based optical network-on-chip for multiprocessor system-on-chip.’ In: Proceedings of the Conference on Design, Automation and Test in Europe, pp. 3–8 (2009)

  20. Wang, Z., et al.: Floorplan optimization of fat-tree based networks-on-chip for chip multiprocessors. IEEE Trans. Comput. 63(6), 1446–1459 (2012)

    Article  MathSciNet  Google Scholar 

  21. Beux, S., Trajkovic, J., Connor, I., Nicolescu, G., Bois, G., Paulin, P.: Optical ring network-on-chip (ORNoC): architecture and design methodology. In: Proceedings of the conference on Design, Automation and Test in Europe, DATE (2011)

  22. Vantrease, D., Schreiber, R., Monchiero, M. et al.: Corona: system implications of emerging nanophotonic technology. In:Proceedings of the 35th Annual International Symposium on Computer Architecture, ISCA, pp. 153– 164 (2008)

  23. Pan, Y., Kim, J., Memik, G.: FlexiShare: Channel sharing for an energy-efficient nanophotonic crossbar. In: Proceedings of the 16th IEEE International Symposium on High Performance Computer Architecture (HPCA), pp. 1–12 (2010)

  24. Guillemot, C., Renaud, M., Gambini, P., et al.: Transparent optical packet switching: the European ACTS KEOPS project approach. J. Lightwave Technol. 16(12), 2117–2134 (1998)

    Article  Google Scholar 

  25. Zhu, Z., Hernandez, V.J., Jeon, M.Y., et al.: RF photonics signal processing in subcarrier multiplexed optical-label switching communication systems. J. Lightwave Technol. 21(12), 3155–3166 (2003)

    Article  Google Scholar 

  26. Pan, Z., Yang, H., Zhu, Z., et al.: Demonstration of variable-length packet contention resolution and packet forwarding in an optical-label switching router. IEEE Photonics Technol. Lett. 16(7), 1772–1774 (2004)

    Article  Google Scholar 

  27. Pan, Z., Yang, H., Hu, J., et al.: Advanced optical-label routing system supporting multicast, optical TTL, and multimedia applications. J. Lightwave Technol. 23, 3270–3281 (2005)

    Article  Google Scholar 

  28. Bai, L., Gu, H., Yang, Y.: A cluster-based reconfigurable optical network on chip design. In: International Symposium on Photonics and Optoelectronics, pp. 978–982 (2012)

  29. Bai, L., Gu, H., Yang, Y., et al.: A crosstalk aware routing algorithm for Benes ONoC. IEICE Electron. Express 9, 1069–1074 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported in part by the National Science Foundation of China under Grant Nos. 61634004, 61472300, 61474087 and 61334003, in part by the 111 Project under Grant No. B08038.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huaxi Gu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, L., Gu, H., Chen, Y. et al. System-level modeling and performance evaluation of multistage optical network on chips (MONoCs). Photon Netw Commun 34, 25–33 (2017). https://doi.org/10.1007/s11107-016-0670-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11107-016-0670-z

Keywords

Navigation