Skip to main content
Log in

Capacity-enhanced receivers for low-latency Burst Optical Slot Switching rings

  • Published:
Photonic Network Communications Aims and scope Submit manuscript

Abstract

We propose a new receiver architecture for coherent detection in slotted optical packet switching rings with elastic (rate adaptive) optical transponders. Such rings are a candidate solution for future datacenter and metropolitan networks. The new receiver can detect more than a single packet per time slot and consequently has higher flexibility (translating into higher supported capacity, or, equivalently, lower end-to-end latency, or a combination or both), at the cost of a moderate increase in the transponder complexity and energy consumption (less than 10 %). We apply network planning and traffic engineering simulation tools (which we validate on small examples using theoretical models) to quantify the increase in network capacity and latency reduction that can be achieved thanks to the use of the new receivers. Finally, we identify the stability problem of the insertion process in the rings with the coherent receivers and propose a polynomial network planning algorithm, for the case of fast-tunable transmitters. We evaluate the cost of enforcing the stability, in terms of the additional transponders needed, for the mentioned case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. Since the latency due to propagation is fixed by the topology, it is not accounted for in our results.

  2. The network planning algorithms enforcing the stability in the other configurations of BOSS rings with coherent detection, including the configurations with the new receivers, are left for future study. Note that the ad hoc stability condition applied on the design of a network with new receivers (that consists in limiting the wavelength occupancy to 90 %) seems to be sufficient for random traffic profile studied in this paper, as shown in Sect. 5.

References

  1. Chiaroni, D., et al.: Packet OADMs for the next generation of ring networks. Bell Labs Tech. J. 14(4), 263–285 (2010)

    Article  Google Scholar 

  2. de Valicourt, G., Mestre, M.A., Bramerie, L., Simon, J.-C., Borgne, E., Vivien, L., Cassan, E., Marris-Morini, D., Fédéli, J.-M., Jennevé, P., Mardoyan, H., Pointurier, Y., Le Liepvre, A., Duan, G.H., Shen, A., Bigo, S.: Monolithic integrated silicon-based slot-blocker for packet-switched networks. In: Proceedings of the ECOC, Cannes, France, Sep 2014, paper We.3.5.5

  3. Simsarian, J.E. et al.: Fast-tuning 224-Gb/s intradyne receiver for optical packet networks. OFC/NFOEC (2010). Paper PDPB5

  4. Sadeghioon, L., Gravey, A., Uscumlic, B., Gravey, P., Morvan, M.: Full featured and lightweight control for optical packet metro networks. J. Opt. Commun. Netw. 7(2), A235–A248 (2015)

    Article  Google Scholar 

  5. Uscumlic, B., Cerutti, I., Gravey, A., Gravey, P., Barth, D., Morvan, M., Castoldi, P.: Optimal dimensioning of the WDM unidirectional ECOFRAME optical packet ring. Photon. Netw. Commun. 22(3), 254–265 (2011)

  6. Benzaoui, N., Pointurier, Y., Bonald, T., Antona, J.-C.: Impact of the electronic architecture of optical slot switching nodes on latency in ring networks. IEEE/OSA J. Opt. Commun. Netw. 6(8), 718–729 (2014)

    Article  Google Scholar 

  7. Uscumlic, B., Gravey, A., Gravey, P., Cerutti, I.: Traffic grooming in WDM optical packet rings. 21st International Teletraffic Congress (ITC’21), Paris, France, Sep (2009)

  8. Uscumlic, B., Pointurier, Y., Gravey, A., Gravey, P., Morvan, M.: Optical receivers with multiple front-ends for low latency optical slot switching rings. In: ONDM 2015: the 19th International Conference on Optical Network Design and Modeling, 11–14 May 2015, Pisa, Italy (2015)

  9. Binkert, N. et al.: The role of optics in future high radix switch design. In: 38th Annual International Symposium on Computer Architecture (ISCA), pp. 437–447, 4–8 June (2011)

  10. Cerutti, I., et al.: Designing energy-efficient data center networks using space-time optical interconnection architectures. IEEE J. Sel. Top. Quantum Electron. 19(2), 3700209–3700209 (2013)

    Article  Google Scholar 

  11. Mestre, M.A. et al.: Optical slot switching-based datacenters with elastic burst-mode coherent transponders. In: Proceedings of the ECOC, Cannes, France, Sep (2014). Paper Th.2.2.3

  12. Indre, R-M, Pesic, J, Roberts, J.: POPI: A Passive Optical Pod Interconnect for high performance data centers. In: Proceedings of the ONDM (2014)

  13. Pointurier, Y., Uscumlic, B., Mestre, M.A., Jennev, P., Mardoyan, H., Dupas, A., Bigo, S.: Green optical slot switching torus for mega-datacenters. ECOC 2015

  14. Farrington, N., Forencich, A., Sun, P., Fainman, S., Ford, J., Vahdat, A., Porter, G., Papen, G.C.: A 10 us hybrid optical-circuit/electrical-packet network for datacenters. In: Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013, OSA Technical Digest (online) (Optical Society of America, 2013). Paper OW3H.3

  15. Ken-ichi Kitayama et al.: Optical Packet and Path Switching Intra-Data Center Network: Enabling Technologies and Network Performance with Intelligent Flow Control. ECOC 2014, paper Tu.1.6.1

  16. Miao, W., et al.: SDN-enabled OPS with QoS guarantee for reconfigurable virtual data center networks. IEEE/OSA J. Opt. Commun. Netw. 7(7), 634–643 (2015). doi:10.1364/JOCN.7.000634

  17. Mukherjee, B.: Optical WDM Networks. Springer, Berlin (2006)

    Google Scholar 

  18. Fujitsu White Paper: The Key Benefits of OTN Networks. Fujitsu Network Communications Inc. (2010). https://www.fujitsu.com/us/Images/OTNNetworkBenefitswp.pdf

  19. 802.17 Resilient packet ring (RPR). IEEE Computer Society (2004)

  20. MPLS Transport Profile (MPLS-TP) A Set of Enhancements to the Rich MPLS Toolkit. White Paper, Juniper, Networks (2011)

  21. IEEE Standard for Local and metropolitan area networks-Virtual Bridged Local Area Networks Amendment 10: Provider Backbone Bridge Traffic Engineering. In: IEEE Std 802.1Qay-2009 (Amendment to IEEE Std 802.1Q-2005), pp. c1–131 (2009). http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5198465&isnumber=5198464

  22. Bouabdallah, N., Pujolle, G., Perros, H.: Cost-effective single-hub wdm ring networks. In: IEEE International Conference on Communications, ICC ’06, vol. 5, pp. 2421–2426, June (2006)

  23. Dittmann, L., et al.: The European IST project DAVID: a viable approach toward optical packet switching. IEEE J. Sel. Areas Commun. 21(7), 1026–1040 (2003). doi:10.1109/JSAC.2003.816388

  24. Carena, A., et al.: RingO: an experimental WDM optical packet network for metro applications. IEEE J. Sel. Areas Commun. 22(8), 1561–1571 (2004). doi:10.1109/JSAC.2004.830479

  25. White, I.M., Rogge, M.S., Shrikhande, K., Kazovsky, L.G.: A summary of the HORNET project: a next-generation metropolitan area network. IEEE J. Sel. Areas Commun. 21, 1478–1494 (2003)

    Article  Google Scholar 

  26. Dunne, J., Farrell, T., Shields, J.: Optical packet switch and transport: a new metro platform to reduce costs and power by 50% to 75% while simultaneously increasing deterministic performance levels. In: Sixth International Conference on Broadband Communications, Networks, and Systems, BROADNETS 2009, pp. 1–5, Sep (2009)

  27. Widjaja, I., Saniee, I., Giles, R., Mitra, D.: Light core and intelligent edge for a flexible, thin-layered, and cost-effective optical transport network. IEEE Commun. Mag. 41(5), S30–S36 (2003). doi:10.1109/MCOM.2003.1200103

  28. Cao, S., Deng, N., Ma, T., Qi, J., Shi, X., He, J., Zhou, J.: An optical burst ring network featuring sub-wavelength- and wavelength-granularity grooming. In: Photonics Global Conference (PGC) 2010, pp. 1–3, Dec (2010)

  29. Popescu, I., Uscumlic, B., Pointurier, Y., Gravey, P., Morvan, M., Gravey, A.: A cost comparison of survivable subwavelength switching optical metro networks. In: Proceedings of the 26th International Teletraffic Congress, ITC 26 , pp. 1–9 (2014)

  30. Uscumlic, B., Gravey, A., Cerutti, I., Gravey, P., Morvan, M.: Stable optimal design of an optical packet ring with tunable transmitters and fixed receivers. ONDM 2013: the 17th International Conference on Optical Network Design and Modeling, 16–19 April 2013, pp. 82–87. Brest, France (2013)

  31. Morea, A. et al.: Power management of optoelectronic interfaces for dynamic optical networks. In: Proceedings of the ECOC, Geneva, Switzerland, Sep (2011). Paper We.8.K.3

  32. http://www.isi.edu/nsnam/ns/

  33. Uscumlic, B., Pointurier, Y., Morea, A., Bigo, S.: On the cost of protection in optical slot switching rings with elastic transponders. In: Proceedings of the OFC, Los Angeles, California, USA, Mar (2015). Paper Th2A.46

  34. Tassiulas, L., Ephremides, A.: Dynamic server allocation to parallel queues with randomly varying connectivity. IEEE Trans. Inf. Theory 39, 466–478 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  35. Stolyar, A.L.: MaxWeight scheduling in a generalized switch: state space collapse and workload minimization in heavy traffic. Ann. Appl. Probab. 14(1), 1–53 (2004)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work was supported by the French Government (Direction Générale des Entreprises) in the framework of the CELTIC+ SASER-SaveNet project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bogdan Uscumlic.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uscumlic, B., Gravey, A., Gravey, P. et al. Capacity-enhanced receivers for low-latency Burst Optical Slot Switching rings. Photon Netw Commun 31, 432–447 (2016). https://doi.org/10.1007/s11107-015-0587-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11107-015-0587-y

Keywords

Navigation