Skip to main content
Log in

Passive phase correction for stable radio frequency transfer via optical fiber

  • Published:
Photonic Network Communications Aims and scope Submit manuscript

Abstract

The transfer of radio frequency (RF) signal via optical fiber is widely adopted in distributed antenna systems and clock standard disseminating networks. To suppress the phase variation caused by fiber length fluctuation, passive phase correction technique based on frequency mixing has been proved as a promising approach due to its significant advantages over the traditional active compensation technique in terms of complexity, compensation speed, and compensation range. The phase correction can be done either in the transmitter or in the receiver, but it usually requires many stages of electronic mixing and auxiliary microwave signals, which not only increases the cost of the link but also degrades the quality of the transmitted signal. In addition, the effect of chromatic dispersion, polarization mode dispersion, and coherent Rayleigh noise in the optical fiber will further deteriorate the phase noise of the signal after transmission. In this paper, an analytical model for the stable RF transfer system based on passive phase correction is established, and the techniques developed in the last few years in solving the problems of the method are described. Future prospects and perspectives are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Lau, K.Y., Lutes, G.F., Tjoelker, R.L.: Ultra-stable RF-over-fiber transport in NASA antennas, phased arrays and radars. J. Lightwave Technol. 32(20), 3440–3451 (2014)

    Article  Google Scholar 

  2. Sliwczynski, L., Krehlik, P., Czubla, A., Buczek, L., Lipinski, M.: Dissemination of time and RF frequency via a stabilized fibre optic link over a distance of 420 km. Metrologia 50(2), 133–145 (2013)

    Article  Google Scholar 

  3. Wilcox, R.B., Staples, J.W.: Systems design concepts for optical synchronization in accelerators. In: Proceedings of the IEEE Particle Accelerator Conference (PAC), Albuquerque, USA, pp. 3807–3809(2007)

  4. Cliche, J.-F., Shillue, B., Tetu, M., Poulin, M.: A 100-GHz-tunable photonic millimeter wave synthesizer for the Atacama Large Millimeter Array radio telescope. In: Proceedings of the 2007 IEEE/MTT-S International Microwave Symposium (IMS), Honolulu, USA, pp. 349–352 (2007)

  5. Macias-Valadez, D.: Improvement of Vertical Precision in GPS Positioning with a GPS-Over-Fiber Configuration and Real-Time Relative Hardware Delay Monitoring. Université Laval, Quebec, Canada (2011)

  6. Thacker, D.L., Shillue, B.: Atacama large millimeter array local oscillator: how photonics is enabling millimeter-wave astronomy. In: Proceedings of the Conference on Optical Fiber Communication/National Fiber Optic Engineers Conference (OFC/NFOEC), Los Angeles, USA, pp. 1–3 (2011)

  7. Wang, W.Q.: GPS-based time & phase synchronization processing for distributed SAR. IEEE Trans. Aerosp. Electron. Syst. 45(3), 1040–1051 (2009)

    Article  Google Scholar 

  8. Ning, B., Zhang, S., Hou, D., Wu, J., Li, Z., Zhao, J.: High-precision distribution of highly stable optical pulse trains with \(8.8 \times 10^{-19}\) instability. Sci. Rep. 4, 1–6 (2014)

    Google Scholar 

  9. Calonico, D., Bertacco, E.K., Calosso, C.E., Clivati, C., Costanzo, G.A., Frittelli, M., Godone, A., Mura, A., Poli, N., Sutyrin, D.V., Tino, G., Zucco, M.E., Levi, F.: High-accuracy coherent optical frequency transfer over a doubled 642-km fiber link. Appl. Phys. B Lasers Opt. 117(3), 979–986 (2014)

    Article  Google Scholar 

  10. Cliche, J.F., Shillue, B.: Precision timing control for radioastronomy—maintaining femtosecond synchronization in the Atacama large millimeter array. IEEE Control Syst. Mag. 26(1), 19–26 (2006)

    Article  Google Scholar 

  11. Krehlik, P., Sliwczynski, L., Buczek, L., Lipinski, M.: Multipoint dissemination of RF frequency in fiber optic link with stabilized propagation delay. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 60(9), 1804–1810 (2013)

    Article  Google Scholar 

  12. Sliwczynski, L., Krehlik, P., Buczek, L., Lipinski, M.: Active propagation delay stabilization for fiber-optic frequency distribution using controlled electronic delay lines. IEEE Trans. Instrum. Meas. 60(4), 1480–1488 (2011)

    Article  Google Scholar 

  13. Lopez, O., Amy-Klein, A., Lours, M., Chardonnet, C., Santarelli, G.: High-resolution microwave frequency dissemination on an 86-km urban optical link. Appl. Phys. B 98(4), 723–727 (2010)

    Article  Google Scholar 

  14. Peng, M.Y., Callahan, P.T., Nejadmalayeri, A.H., Valente, S., Xin, M., Grüner-Nielsen, L., Monberg, E.M., Yan, M., Fini, J.M., Kärtner, F.X.: Long-term stable, sub-femtosecond timing distribution via a 1.2-km polarization-maintaining fiber link: approaching \(10^{-21}\) link stability. Opt. Express 21(17), 19982–19989 (2013)

    Article  Google Scholar 

  15. Musha, M., Hong, F.L., Nakagawa, K., Ueda, K.: Coherent optical frequency transfer over 50-km physical distance using a 120-km-long installed telecom fiber network. Opt. Express 16(21), 16459–16466 (2008)

    Article  Google Scholar 

  16. Holman, K.W., Hudson, D.D., Ye, J., Jones, D.J.: Remote transfer of a high-stability and ultralow-jitter timing signal. Opt. Lett. 30(10), 1225–1227 (2005)

    Article  Google Scholar 

  17. Kim, J., Chen, J., Zhang, Z., Wong, F., Kärtner, F., Loehl, F., Schlarb, H.: Long-term femtosecond timing link stabilization using a single-crystal balanced cross correlator. Opt. Lett. 32(9), 1044–1046 (2007)

    Article  Google Scholar 

  18. Zhang, A.X., Dai, Y.T., Yin, F.F., Ren, T.P., Xu, K., Li, J.Q., Lin, J.T., Tang, G.S.: Phase-stabilized delivery for multiple local oscillator signals via optical fiber. IEEE Photonics J. 6(3), 1–8 (2014)

    Article  Google Scholar 

  19. Marra, G., Margolis, H.S., Lea, S.N., Gill, P.: High-stability microwave frequency transfer by propagation of an optical frequency comb over 50 km of optical fiber. Opt. Lett. 35(7), 1025–1027 (2010)

    Article  Google Scholar 

  20. Krehlik, P., Sliwczynski, L., Buczek, L., Lipinski, M.: Fiber-optic joint time and frequency transfer with active stabilization of the propagation delay. IEEE Trans. Instrum. Meas. 61(10), 2844–2851 (2012)

    Article  Google Scholar 

  21. Hou, D., Li, P., Liu, C., Zhao, J., Zhang, Z.: Long-term stable frequency transfer over an urban fiber link using microwave phase stabilization. Opt. Express 19(2), 506–511 (2011)

    Article  Google Scholar 

  22. Zhang, L., Chang, L., Dong, Y., Xie, W., He, H., Hu, W.: Phase drift cancellation of remote radio frequency transfer using an optoelectronic delay-locked loop. Opt. Lett. 36(6), 873–875 (2011)

    Article  Google Scholar 

  23. Shen, J., Wu, G., Hu, L., Zou, W., Chen, J.: Active phase drift cancellation for optic-fiber frequency transfer using a photonic radio-frequency phase shifter. Opt. Lett. 39(8), 2346–2349 (2014)

  24. Narbonneau, F., Lours, M., Bize, S., Clairon, A., Santarelli, G., Lopez, O., Daussy, C., Amy-Klein, A., Chardonnet, C.: High resolution frequency standard dissemination via optical fiber metropolitan network. Rev. Sci. Instrum. 77(6), 1–8 (2006)

    Article  Google Scholar 

  25. Sun, D., Dong, Y., Shi, H., Xia, Z., Liu, Z., Wang, S., Xie, W., Hu, W.: Distribution of high-stability 100.04 GHz millimeter wave signal over 60 km optical fiber with fast phase-error-correcting capability. Opt. Lett. 39(10), 2849–2852 (2014)

    Article  Google Scholar 

  26. Ning, B., Hou, D., Zheng, T., Zhao, J.: Hybrid analog-digital fiber-based radio-frequency signal distribution. IEEE Photonics Technol. Lett. 25(16), 1551–1554 (2013)

    Article  Google Scholar 

  27. Akiyama, T., Matsuzawa, H., Haraguchi, E., Ando, T., Hirano, Y.: Phase stabilized RF reference signal dissemination over optical fiber employing instantaneous frequency control by VCO. In: Proceedings of the IEEE MTT-S International Microwave Symposium (IMS), Montreal, Canada, pp. 1–3 (2012)

  28. Wang, B., Gao, C., Chen, W., Miao, J., Zhu, X., Bai, Y., Zhang, J., Feng, Y., Li, T., Wang, L.: Precise and continuous time and frequency synchronisation at the \(5\times 10^{-19}\) accuracy level. Sci. Rep. 2, 1–5 (2012)

    Google Scholar 

  29. Fujieda, M., Kumagai, M., Nagano, S.: Coherent microwave transfer over a 204-km telecom fiber link by a cascaded system. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57(1), 168–174 (2010)

    Article  Google Scholar 

  30. Kumagai, M., Fujieda, M., Nagano, S., Hosokawa, M.: Stable radio frequency transfer in 114 km urban optical fiber link. Opt. Lett. 34(19), 2949–2951 (2009)

    Article  Google Scholar 

  31. Ning, B., Du, P., Hou, D., Zhao, J.: Phase fluctuation compensation for long-term transfer of stable radio frequency over fiber link. Opt. Express 20(27), 28447–28454 (2012)

    Article  Google Scholar 

  32. Li, Z.L., Yan, L.S., Peng, Y.L., Pan, W., Luo, B., Shao, L.Y.: Passive approach for phase fluctuation cancellation of anonymous microwave signal transmission. In: Proceedings of the Optical Fiber Communications Conference and Exhibition (OFC), San Francisco, USA, pp. 1–3 (2014)

  33. Kim, J., Cox, J.A., Chen, J., Kärtner, F.X.: Drift-free femtosecond timing synchronization of remote optical and microwave sources. Nat. Photonics 2(12), 733–736 (2008)

    Article  Google Scholar 

  34. Kiuchi, H.: Highly stable millimeter-wave signal distribution with an optical round-trip phase stabilizer. IEEE Trans. Microw. Theory Tech. 56(6), 1493–1500 (2008)

    Article  Google Scholar 

  35. Gao, C., Wang, B., Chen, W., Bai, Y., Miao, J., Zhu, X., Li, T., Wang, L.: Fiber-based multiple-access ultrastable frequency dissemination. Opt. Lett. 37(22), 4690–4692 (2012)

    Article  Google Scholar 

  36. Lopez, O., Amy-Klein, A., Daussy, C., Chardonnet, C., Narbonneau, F., Lours, M., Santarelli, G.: 86-Km optical link with a resolution of \(2\times \, 10^{-18}\) for RF frequency transfer. Eur. Phys. J. D 48(1), 35–41 (2008)

    Article  Google Scholar 

  37. Wu, Z., Dai, Y., Yin, F., Xu, K., Li, J., Lin, J.: Stable radio frequency phase delivery by rapid and endless post error cancellation. Opt. Lett. 38(7), 1098–1100 (2013)

    Article  Google Scholar 

  38. Wei, J., Zhang, F., Zhou, Y., Ben, D., Pan, S.: Stable fiber delivery of radio-frequency signal based on passive phase correction. Opt. Lett. 39(11), 3360–3362 (2014)

    Article  Google Scholar 

  39. Li, W., Wang, W.T., Sun, W.H., Wang, W.Y., Zhu, N.H.: Stable radio-frequency phase distribution over optical fiber by phase-drift auto-cancellation. Opt. Lett. 39(15), 4294–4296 (2014)

    Article  Google Scholar 

  40. Chang, L., Dong, Y., Sun, D., Zhang, D., Xie, W., Hu, W.: Influence and suppression of coherent Rayleigh noise in fiber-optic-based phase-stabilized microwave-frequency transmission system. Acta Opt. Sin. 32(5), 51–56 (2012)

    Article  Google Scholar 

  41. Zhang, F., Wei, J., Pan, S.: Stable radio transfer via an optic cable with multiple fibers based on passive phase error correction. In: Proceedings of the International Topical Meeting on Microwave Photonics (MWP), Sapporo, Japan, pp. 196–199 (2014)

  42. Yin, F., Zhang, A., Dai, Y., Ren, T., Xu, K., Li, J., Lin, J., Tang, G.: Phase-conjugation-based fast RF phase stabilization for fiber delivery. Opt. Express 22(1), 878–884 (2014)

    Article  Google Scholar 

  43. Yu, L., Wang, R., Lu, L., Zhu, Y., Wu, C., Zhang, B., Wang, P.: Stable radio frequency dissemination by simple hybrid frequency modulation scheme. Opt. Lett. 39(18), 5255–5258 (2014)

    Article  Google Scholar 

  44. Li, D., Hou, D., Hu, E., Zhao, J.: Phase conjugation frequency dissemination based on harmonics of optical comb at 10–17 instability level. Opt. Lett. 39(17), 5058–5061 (2014)

    Article  Google Scholar 

  45. He, Y., Orr, B.J., Baldwin, K.G., Wouters, M.J., Luiten, A.N., Aben, G., Warrington, R.B.: Stable radio-frequency transfer over optical fiber by phase-conjugate frequency mixing. Opt. Express 21(16), 18754–18764 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the National Basic Research Program of China (2012CB315705), National Natural Science Foundation of China (61401201, 61422108), the Natural Science Foundation of Jiangsu Province (BK2012031, BK20140822), and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shilong Pan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, S., Wei, J. & Zhang, F. Passive phase correction for stable radio frequency transfer via optical fiber. Photon Netw Commun 31, 327–335 (2016). https://doi.org/10.1007/s11107-015-0519-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11107-015-0519-x

Keywords

Navigation