Skip to main content
Log in

Knowledge-based framework for the design of millimeter-wave (60 GHz) radio over fiber land networks

  • Published:
Photonic Network Communications Aims and scope Submit manuscript

Abstract

This paper presents the research work involved in the development of a knowledge-based framework for the design of millimeter-wave 60 GHz radio over fiber (RoF) land networks. It combines object-oriented, rule-based, technical information, and procedural functions to support engineers in the conceptual and preliminary design of a network. The overall framework is organized in two main modules: the first module is a tutorial of the terminology and basic principles in the design of RoF networks. The second module is a design assistant system that requests input data from the user about the functional network requirements and its prioritized figures of merit. The proposed design assistant is capable of providing support on the major activities of the 60 GHz RoF land network design such as downlink and uplink channel assignment and network clustering, wavelength allocation, optical link design, and network integration. The assistant is user interactive through the implementation of a graphical user interface. To illustrate the validation of such framework, we present a case of study of a network design with specific requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Yang, Y., Lim, C., Nirmalathas, A.: Investigation on transport schemes for efficient high-frequency broadband OFDM transmission in fibre-wireless links. J. Lightwave Technol. 32(2), 267–274 (2014)

    Article  Google Scholar 

  2. Pi, Z., Khan, F.: An introduction to millimeter-wave mobile broadband systems. IEEE Commun. Mag. 49(6), 101–107 (2011)

    Article  Google Scholar 

  3. Sarkar, S., Dixit, S., Mukherjee, B.: Hybrid wireless-optical broadband-access network (WOBAN): a review of relevant challenges. J. Lightwave Technol. 25(11), 3329–3340 (2007)

    Article  Google Scholar 

  4. Shaw, W.-T., Wong, S.-W., Cheng, N., Kazovsky L.G.: Marin hybrid optical-wireless access network. In: Optical Fiber Communication Conference (OFC), pp. 1–3 (2007)

  5. Pato, S., Pedro, J., Monteiro, P.: Comparative evaluation of fibre-optic architectures for next-generation distributed antenna systems. In: 11th International Conference on Transparent Optical Networks. ICTON ’09, pp. 1–4 (2009)

  6. Ghazisaidi, N., Maier, M., Assi, C.M.: Fiber-wireless (FiWi) access networks: a survey. IEEE Commun. Mag. 47(2), 160–167 (2009)

    Article  Google Scholar 

  7. Wong, S.-W., Campelo, D.R., Cheng, N., Yen, S.-H., Kazovsky, L., Lee, H., Cox, D.C.: Grid reconfigurable optical-wireless architecture for large scale municipal mesh access network. In: IEEE Global Telecommunications Conference. GLOBECOM, pp. 1–6 (2009)

  8. Kanonakis, K., Tomkos, I., Krimmel, H.-G., Schaich, F., Lange, C., Weis, E., Leuthold, J., Winter, M., Romero, S., Kourtessis, P., Milosavljevic, M., Cano, I.N., Prat, J.: An OFDMA-based optical access network architecture exhibiting ultra-high capacity and wireline-wireless convergence. IEEE Commun. Mag. 50(8), 72–78 (2012)

    Article  Google Scholar 

  9. Wells, J.: Faster than fiber: the future of multi-G/s wireless. IEEE Microwave Mag. 10(3), 104–112 (2009)

    Article  Google Scholar 

  10. Kawanishi, T.: Ultra high-speed fiber wireless transport. In: Conference on Optical Fiber Communication OFC, pp. 1–3 (2014)

  11. Mohamed, M., Hraimel, B., Zhang, X., Sakib, M.N., Wu, K.: Frequency quadrupler for millimeter-wave multiband OFDM ultrawideband wireless signals and distribution over fiber systems. IEEE/OSA J. Opt. Commun. Netw. 1(5), 428–438 (2009)

    Article  Google Scholar 

  12. Sambaraju, R., Herrera, J., Marti, J., Zibar, D., Caballero, A., Jensen, J.B., Monroy, I.T.: Up to 40 Gb/s wireless signal generation and demodulation in 75–110 GHz band using photonic techniques. In: IEEE Topical Meeting on Microwave Photonics (MWP), pp. 1–4 (2010)

  13. Hirata, A., Takahashi, H., Yamaguchi, R., Kosugi, T., Murata, K., Nagatsuma, T., Kukutsu, N., Kado, Y.: Transmission characteristics of 120-GHz-band wireless link using radio-on-fiber technologies. J. Lightwave Technol. 26(15), 2338–2344 (2008)

    Article  Google Scholar 

  14. Song, H.-J., Ajito, K., Hirata, A., Wakatsuki, A., Muramoto, Y., Furuta, T., Kukutsu, N., Nagatsuma, T., Kado, Y.: 8 Gbit/s wireless data transmission at 250 GHz. Electron. Lett. 45(22), 1121–1122 (2009)

    Article  Google Scholar 

  15. Koenig, S., Antes, J., Lopez-Diaz, D., Kallfass, I., Zwick, T., Koos, C., Freude, W., Leuthold, J.: High-speed wireless bridge at 220 GHz connecting two fiber-optic links each spanning up to 20 Km. In: Optical Fiber Communication Conference (OFC), pp. 1–3 (2012)

  16. Giannetti, F., Luise, M., Reggiannini, R.: Mobile and personal communications in the 60 GHz band: a survey. Wirel. Pers. Commun. 10(2), 207–243 (1999)

    Article  Google Scholar 

  17. Velez, F.J., Correira, L.M., Brazio, J.M.: Frequency reuse and system capacity in mobile broadband systems: comparison between the 40 and 60 GHz bands. Wirel. Pers. Commun. 19(1), 1–24 (2001)

    Article  Google Scholar 

  18. Baykas, T., Sum, C.-S., Lan, Z., Wang, J., Rahman, M.A., Harada, H., Kato, S.: IEEE 802.15.3c: the first IEEE wireless standard for data rates over 1 Gb/s. IEEE Commun. Mag. 49(7), 114–121 (2011)

    Article  Google Scholar 

  19. Yong, S.K., Chong, C.-C.: An overview of multigigabit wireless through millimeter wave technology: potentials and technical challenges. In: EURASIP Journal on Wireless Communications and Networking, pp. 1–10 (2007)

  20. Daniels, R.C., Heath Jr, R.W.: 60 GHz wireless communications: emerging requirements and design recommendations. IEEE Veh. Technol. Mag. 2(3), 41–50 (2007)

    Article  Google Scholar 

  21. Stohr, A., Babiel, S., Cannard, P.J., Charbonnier, B., van Dijk, F., Fedderwitz, S., Moodie, D., Pavlovic, L., Ponnampalam, L., Renaud, C.C., Rogers, D., Rymanov, V., Seeds, A., Steffan, A.G., Umbach, A., Weiß, M.: Millimeter-wave photonic components for broadband wireless systems. IEEE Trans. Microw. Theory Tech. 58(11), 3071–3082 (2010)

    Article  Google Scholar 

  22. Ngioma, A., Lin, C.-T., Wang He, L.-Y., Jiang Jr, W., Annunziata, F., Chen, J.J., Shih, P.-T., George, J., Chi, S.: 31 Gbps RoF system employing adaptive bit-loading OFDM modulation at 60 GHz. In: Optical Fiber Communication Conference (OFC), pp. 1–3 (2011)

  23. Lin, C.-T., Ho, C.-H., Huang, H.-T., Cheng, Y.-H.: 84-Gbps 64-QAM 2 2 MIMO RoF system at 60 GHz employing single-sideband single-carrier modulation. In: Conference on Optical Fiber Communication OFC, pp. 1–3 (2014)

  24. IEEE 802.16. Standard for wireless metropolitan area networks (WiMax). http://ieee802.org/16/

  25. ECMA-387 Standard. High rate 60 GHz PHY, MAC and HDMI PALs, pp. 1–302. http://www.ecma-international.org (2010)

  26. IEEE 802.15.3c Standard. Wireless medium access control (MAC) and physical layer (PHY) specifications for high rate wireless personal area networks (WPANs), pp. 1–203. http://www.ieee802.org/15/pub/TG3c.html (2009)

  27. Wireless Gigabit Alliance. WiGig white paper: defining the future of multi-gigabit wireless communications, pp. 1–5. http://wirelessgigabitalliance.org/ (2010)

  28. Aldaya, I., Beas, J., Castanón, G., Campuzano, G., Aragón-Zavala, A.: A survey of key-enabling components for remote millimetric wave generation in radio over fiber networks. Opt. Laser Technol. 49(2), 213–226 (2013)

    Article  Google Scholar 

  29. Rappaport, T.S., Murdock, J.N., Gutierrez, F.: State of the art in 60-GHz integrated circuits and systems for wireless communications. Proc. IEEE 99(8), 1390–1436 (2011)

    Article  Google Scholar 

  30. Zhu, M., Zhang, L., Wang, J., Cheng, L., Liu, C., Chang, G.-K.: Radio-over-fiber access architecture for integrated broadband wireless services. J. Lightwave Technol. 31(23), 3614–3620 (2014)

    Article  Google Scholar 

  31. Kazovsky, L., Wong, S.-W., Ayhan, T., Albeyoglu, K.M., Ribeiro, M.R.N., Shastri, A.: Hybrid optical wireless access networks. Proc. IEEE 100(5), 129 (2012)

    Article  Google Scholar 

  32. WirelessHD. WirelessHD specification version 1.1 overview, pp. 1–95. http://www.wirelesshd.org/ (2010)

  33. The Fiber Optic Association, Inc.: Guide to fiber optic network design. In: FOA Technical Bulletin, pp. 1–30. http://www.thefoa.org/ (2011)

  34. Dabke, K.P., Binh, L.N., Lau, S.P.: Expert system for the design of optical fibre communications links. Eng. Appl. Artif. Intell. 8(3), 319–331 (1995)

    Article  Google Scholar 

  35. Wu, C.-H., Lee, S.-J.: An object-oriented expert system for local area network design. In: Proceedings ICCI, Fifth International Conference on Computing and Information, pp. 321–326 (1993)

  36. El-fishawy, N.A., Khamis, S.A.: An expert system architecture for the design of local area networks. In: IEEE Vehicular Technology Conference, pp. 1979–1985 (2000)

  37. Sandrasegarana, K., Prag, K.: Planning point-to-multipoint rural radio access networks using expert systems. Expert Syst. Appl. 17(3), 145–166 (1999)

    Article  Google Scholar 

  38. Monedero, I., León, C., Denda, R., Muñoz, S., Elena, J.M., Luque, J.: An expert system approach for the design of cable networks. In: IEEE 28th Annual Conference of the Industrial Electronics Society, pp. 1899–1902 (2002)

  39. Kim, C.: Communication network design and analysis expert systems based on higher level representations. Expert Syst. Appl. 13(2), 127–143 (1997)

    Article  Google Scholar 

  40. Hilas, C.S.: Designing an expert system for fraud detection in private telecommunications networks. Expert Syst. Appl. 36(9), 11559–11569 (2009)

    Article  Google Scholar 

  41. Martín, A., León, C., Luque, J., Monedero, I.: A framework for development of integrated intelligent knowledge for management of telecommunication networks. Expert Syst. Appl. 39(10), 9264–9274 (2012)

    Article  Google Scholar 

  42. Lim, C., Nirmalathas, A., Bakaul, M., Gamage, P., Lee, K.-L., Yang, Y., Novak, D., Waterhouse, R.: Fiber-wireless networks and subsystem technologies. J. Lightwave Technol. 28(4), 390–405 (2010)

    Article  Google Scholar 

  43. Braun, R.P.: Tutorial: fibre radio systems, applications and devices. In: 24th European Conference on Optical Communication, pp. 87–119 (1998)

  44. Yao, J.: Microwave photonics. J. Lightwave Technol. 27(3), 314–335 (2009)

    Article  Google Scholar 

  45. Jia, Z., Yu, J., Ellinas, G., Chang, G.-K.: Key enabling technologies for optical wireless networks: optical millimeter-wave generation, wavelength reuse, and architecture. J. Lightwave Technol. 25(11), 3452–3470 (2007)

    Article  Google Scholar 

  46. Seeds, A.J., Williams, K.J.: Microwave photonics. J. Lightwave Technol. 24(12), 4628–4641 (2006)

    Article  Google Scholar 

  47. Mohamed, N., Idrus, S.M., Mohammad, A.B.: Review on system architectures for the millimeter-wave generation techniques for RoF communication link. In: IEEE International RF and Microwave Conference (RFM), pp. 326–330 (2008)

  48. Zhang, Y.: Development of millimeter-wave radio-over-fiber technology. J. Electron. Sci. Technol. 9(1), 58–66 (2011)

    Google Scholar 

  49. Sun, X., Chan, C.-K., Wang, Z., Lin, C., Chen, L.-K.: A single-fiber bi-directional WDM self-healing ring network with bi-directional OADM for metro-access applications. IEEE J. Sel. Areas Commun. 25(4), 18–24 (2007)

    Article  Google Scholar 

  50. Castañón, G., Campuzano, G., Tonguz, O.: High reliability and availability in radio over fiber networks. OSA J. Opt. Netw. 7(6), 603–616 (2008)

    Article  Google Scholar 

  51. Peng, P.-C., Feng, K.-M., Chiou, H.-Y., Peng, W.-R., Chen, J.-J., Kuo, H.-C., Wang, S.-C., Chi, S.: Reliable architecture for high-capacity fiber-radio systems. In: Optical Fiber Technology, pp. 236–239 (2007)

  52. Chang, C.-H., Liang, T.-C., Huang, C.-Y.: DWDM self-healing access ring network with cost-saving, crosstalk-free and bidirectional OADM in single fiber. In: Optics Communications, pp. 4518–4523 (2009)

  53. Pham, T.-T., Lebedev, A., Beltran, M., Yu, X., Llorente, R., Monroy, I.T.: Combined single-mode/multimode fiber link supporting simplified in-building 60-GHz gigabit wireless access. Opt. Fiber Technol. 18(4), 226–229 (2012)

    Article  Google Scholar 

  54. Kuri, T., Kitayama, K., Takahashi, Y.: 60-GHz-band full-duplex radio-on-fiber system using two-RF-port electroabsorption transceiver. IEEE Photonics Technol. Lett. 12(4), 419–421 (2000)

    Article  Google Scholar 

  55. Wake, D., Nkansah, A., Gomes, N.J., Valicourt, G., Brenot, R., Violas, M., Zhansheng, L., Ferreira, F., Pato, S.: A comparison of radio over fiber link types for the support of wideband radio channels. J. Lightwave Technol. 28(16), 2416–2422 (2010)

    Article  Google Scholar 

  56. Lecoche, F., Charbonnier, B., Frank, F., Dijk, F. Van Enard, A., Blache, F., Goix, M., Mallecot, F., Moodie, D.: 60 GHz bidirectional optical signal distribution system at 3 Gbps for wireless home network. In: International Topical Meeting on Microwave Photonics, MWP ’09, pp. 1–3 (2009)

  57. Islam, A.H.M.R., Bakaul, M., Nirmalathas, A., Town, G.E.: Simplification of base station and uplink optical transport in millimeter-wave radio-over-fiber system employing RF self-homodyning. In: International Topical Meeting on Microwave Photonics Conference MWP/APMP, pp. 17–20 (2011)

  58. Hartmann, P., Qian, X., Wonfor, A., Penty, R.V., White, I.H.: 1–20 GHz directly modulated radio over MMF link. In: International Topical Meeting on Microwave Photonics. MWP 2005, pp. 95–98 (2005)

  59. Parekh, D., Yang, W., Ng’oma, A., Fortusini, D., Sauer, M., Benjamin, S., Hofmann, W., Amann, M.C., Chang-Hasnain, C.J.: Multi-Gbps ASK and QPSK-modulated 60 GHz RoF link using an optically injection locked VCSEL. In: Optical Fiber Communication (OFC), collocated National Fiber Optic Engineers Conference (OFC/NFOEC), pp. 1–3 (2010)

  60. Ng’oma, A.: Radio-over-fibre technology for broadband wireless communication systems. PhD Thesis, Eindhoven University of Technology, pp. 1–159 (2005)

  61. Lim, C., Attygalle, M., Nirmalathas, A., Novak, D., Waterhouse, R.: Analysis of optical carrier-to-sideband ratio for improving transmission performance in fiber-radio links. IEEE Trans. Microw. Theory Tech. 54(5), 2181–2187 (2006)

    Article  Google Scholar 

  62. Toda, H., Nakasyotani, T., Kurit, T., Kitayama, K.I.: WDM mm-wave-band radio-on-fiber system using single supercontinuum light source in cooperation with photonic up-conversion. In: IEEE International Topical Meeting on Microwave Photonics, pp. 161–164 (2004)

  63. Sun, C., Huang, J., Xiong, B., Luo, Y.: Low phase noise millimeter-wave generation by integrated dual wavelength laser diode. In: Conference on Optical Fiber communication OFC, pp. 1–3 (2010)

  64. Pham, T.T., Kim, H.-S., Won, Y.-Y., Han, S.-K.: Bidirectional 1.25-Gbps wired/wireless optical transmission based on single sideband carriers in Fabry–Perot laser diode by multimode injection locking. J. Lightwave Technol. 27(13), 2457–2464 (2009)

    Article  Google Scholar 

  65. Insua, I.G., Plettemeier, D., Schaffer, C.G.: Simple remote heterodyne radio over fiber system for Gbps wireless access. J. Lightwave Technol. 28(13), 1–1 (2010)

    Article  Google Scholar 

  66. Campuzano, G., Aldaya, I., Castañón, G.: Performance of digital modulation formats in radio over fiber systems based on the sideband injection locking technique. In: 3rd ICTON Mediterranean Winter Conference ICTON-MW, pp. 1–5 (2009)

  67. Aldaya, I., Gosset, C., Campuzano, G., Giacoumidis, E., Castañón, G.: Cost-efficient OFDM generation at 60-GHz by heterodyne technique with direct modulation and envelope detector. In: 15th International Conference on Transparent Optical Networks (ICTON), pp. 1–5 (2013)

  68. Stohr, A., Cojucari, O., van Dijk, F., Carpintero, G., Tekin, T., Formont, S., Flammia, I., Rymanov, V., Khani, B., Chuenchom, R.: Robust 71–76 GHz radio-over-fiber wireless link with high-dynamic range photonic assisted transmitter and laser phase-noise insensitive SBD receiver. In: Conference on Optical Fiber Communication OFC, pp. 1–3 (2014)

  69. Kuri, T., Toda, H., Kitayama, K.-I.: Novel demultiplexer for dense wavelength-division-mutliplexed millimeter-wave-band radio-over-fiber systems with optical frequency interleaving technique. IEEE Photonics Technol. Lett. 19(24), 2018–2020 (2007)

    Article  Google Scholar 

  70. Castañón, G., Sarmiento, A.M., Ramírez, R., Aragón-Zavala, A.: Software tool for network reliability and availability analysis. Wire J. Int. 42(9), 74–81 (2009)

    Google Scholar 

  71. Ghafoor, S., Hanzo, L.: Sub-carrier-multiplexed duplex 64-QAM radio-over-fiber transmission for distributed antennas. IEEE Commun. Lett. 15(12), 1368–1371 (2011)

    Article  Google Scholar 

  72. Borella, M.S., Jue, J.P., Banerjee, D., Ramamurthy, B., Mukherjee, B.: Optical components for WDM lightwave networks. Proc. IEEE 85(8), 1274–1307 (1997)

    Article  Google Scholar 

  73. Tomlinson, W.J.: Evolution of passive optical component technologies for fiber-optic communication systems. J. Lightwave Technol. 26(9), 1046–1063 (2008)

    Article  Google Scholar 

  74. Ismail, T., Mitchell, J.E., Seeds, A.J.: Linearity enhancement of a directly modulated uncooled dfb laser in a multi-channel wireless-over-fibre system. In: IEEE MTT-S International Microwave Symposium Digest, pp. 1–4 (2005)

  75. Wong, E., Prasanna, A.G., Lim, C., Lee, K.L., Nirmalathas, A.: Simple VCSEL base-station configuration for hybrid fiber-wireless access networks. IEEE Photonics Technol. Lett. 21(8), 534–536 (2009)

    Article  Google Scholar 

  76. Kuri, T., Kitayama, K., Takahashi, Y.: A single light-source configuration for full-duplex 60-GHz-band radio-on-fiber system. IEEE Trans. Microw. Theory Tech. 51(2), 431–439 (2003)

    Article  Google Scholar 

  77. Chang, Q., Fu, H., Su, Y.: Simultaneous generation and transmission of downstream multiband signals and upstream data in a bidirectional radio-over-fiber system. IEEE Photonics Technol. Lett. 20(3), 181–183 (2008)

    Article  Google Scholar 

  78. Kim, H.-S., Pham, T.T., Won, Y.-Y., Han, S.-K.: Bidirectional WDM-RoF transmission for wired and wireless signals. In: Asia Communications and Photonics Conference and Exhibition (ACP), pp. 1–12 (2009)

  79. Liu, Z., Sadeghi, M., de Valicourt, G., Brenot, R., Violas, M.: Experimental validation of a reflective semiconductor optical amplifier model used as a modulator in radio over fiber systems. IEEE Photonics Technol. Lett. 23(9), 576–578 (2011)

    Article  Google Scholar 

  80. Lim, M.C., Nirmalathas, A., Novak, D., Waterhouse, R., Yoffe, G.: Millimeter-wave broad-band fiber-wireless system incorporating baseband data transmission over fiber and remote LO delivery. J. Lightwave Technol. 18(10), 1355–1363 (2004)

    Article  Google Scholar 

  81. Yodprasit, U., Carta, C, Ellinger, F.: 11.5-Gbps 2.4-pJ/bit 60-GHz OOK demodulator integrated in a SiGe BiCMOS technology. In: Proceedings of the 8th European Microwave Integrated Circuits Conference, pp. 1–4 (2013)

  82. Stohr, A., Kitayama, K., Jager, D.: Full-duplex fiber-optic RF subcarrier transmission using a dual-function modulator/photodetector. IEEE Trans. Microw. Theory Tech. 47(7), 1338–1341 (1999)

    Article  Google Scholar 

  83. Kitayama, K.-I., Stohr, A., Kuri, T., Heinzelmann, R., J’ger, D., Takahashi, Y.: An approach to single optical component antenna base stations for broad-band millimeter-wave fiber-radio access systems. IEEE Trans. Microw Theory Tech. 48(12), 2588–2595 (2000)

    Article  Google Scholar 

  84. Beas, J., Castanón, G., Aldaya, I., Aragón-Zavala, A., Campuzano, G.: Millimeter-wave frequency radio over fiber systems: a survey. IEEE Surv Tutor. 15(4), 1593–1619 (2014)

    Article  Google Scholar 

  85. Shaddad, R.Q., Mohammada, A.B., Al-Gailani, S.A., Al-hetar, A.M., Elmagzoub, M.A.: A survey on access technologies for broadband optical and wireless networks. J. Netw. Comput. Appl. 41(1), 459–472 (2014)

    Article  Google Scholar 

  86. Gordejuela-Sánchez, F., Juttner, A., Zhang, J.: A multiobjective optimization framework for IEEE 802.16e network design and performance analysis. IEEE J. Sel. Areas Commun. 27(2), 202–216 (2009)

    Article  Google Scholar 

  87. Pereverzev, A., Ageyev, D.: Design method access network radio over fiber. In: 2013 12th International Conference on the Experience of Designing and Application of CAD Systems in Microelectronics (CADSM), pp. 288–292 (2013)

  88. Gowda, A.S., Dhaini, A.R., Kazovsky, L.G., Yang, H., Abraha, S.T., Ngoma, A.: Towards green optical/wireless in-building networks: radio-over-fiber. J. Lightwave Technol. 32(20), 3545–3556 (2014)

    Article  Google Scholar 

  89. Rebhi, S., Barrak, R., Menif, M.: Optic/RF co-design for oudoor RoF system at 60 GHz. In: Mediterranean Microwave Symposium (MMS), 2013 13th, pp. 1–4 (2013)

  90. Bragg, A.W.: Which network design tool is right for you? IT Prof. 2(5), 23–32 (2000)

    Article  Google Scholar 

  91. Kitayama, K.I.: Architectural considerations of radio-on-fiber millimeter-wave wireless access systems. In: URSI International Symposium on Signals, Systems, and Electronics, pp. 378–383 (1998)

  92. Mello, D.A.A., Schupket, D.A., Scheffel, M., Waldman, H.: Availability maps for connections in WDM optical networks. In: 5th International Workshop on Design of Reliable Communication Networks, pp.77–84 (2005)

  93. Quanterion Solution. Final Report. Photonic component and subsystem reliability process. http://www.theriac.org/informationresources/demosanddownloads/Unlimited20Distribution/PhotonicComponentReliability-PR08-1125.pdf (2008)

  94. Bradley, N.: Installing fibre-optic cables underground. http://www.beyondbroadband.coop/kb/installing-fibre-optic-cables-underground (2012)

  95. Agrawal, G.P.: Fiber-Optic Communication Systems. Wiley, London (2002)

    Book  Google Scholar 

  96. Shafik, R.A., Rahman, S., Islam, A.H.M.R.: On the extended relationships among EVM, BER and SNR as performance metrics. In: 4th International Conference on Electrical and Computer Engineering, pp. 408–411 (2006)

  97. Recommendation ITU-T G.694.1. Spectral grids for WDM applications: DWDM frequency grid. http://www.itu.int/rec/T-REC-G.694.1/ (2012)

  98. Recommendation ITU-T G.694.2. Spectral grids for WDM applications: CWDM wavelength grid. http://www.itu.int/rec/T-REC-G.694.2 (2003)

  99. Kim, C.H.: Impact of various noises on maximum reach in broadband light source based high-capacity WDM passive optical networks. Opt. Express 18(10), 1–6 (2010)

    Google Scholar 

  100. Chattopadhyay, T.: A millimeter-wave radio-over-fiber system for overcoming fiber dispersion-induced signal cancellation effect. Optoelectron. Lett. 8(4), 293–296 (2011)

    Article  Google Scholar 

  101. Lim, C., Nirmalathas, A., Novak, D., Tucker, R.S., Waterhouse, R.B.: Wavelength-interleaving technique to improve optical spectral efficiency in millimeter-wave WDM fiber-radio. In: The 14th Annual Meeting of the IEEE LEOS 2001, pp. 54–55 (2001)

  102. Toda, H., Yamashita, T., Kuri, T., Kitayama, K.: OSA demultiplexing using an arrayed-waveguide grating for frequency-interleaved DWDM millimeter-wave radio-on-fiber systems. J. Lightwave Technol. 21(8), 1735–1741 (2003)

    Article  Google Scholar 

  103. Kuri, T., Toda, H., Olmos, J.J.V., Kitayama, K.: Reconfigurable dense wavelength division multiplexingmillimeter-wave-band radio-over-fiber access system technologies. J. Lightwave Technol. 28(16), 2247–2257 (2010)

    Article  Google Scholar 

  104. Korotky, S.K.: Price-points for components of multi-core fiber communication systems in backbone optical networks. IEEE/OSA J. Opt. Commun. Netw. 4(5), 426–435 (2012)

    Article  Google Scholar 

  105. Zhu, B., Taunay, T.F., Yan, M.F., Fini, J.M., Fishteyn, M., Monberg, E.M., Dimarcello, F.V.: Seven-core multicore fiber transmissions for passive optical network. Opt. Express 8(11), 11117–11122 (2010)

    Article  Google Scholar 

  106. Toda, H., Nakasyotani, T., Kuri, T., Kitayama, K.I.: Full-duplex 25-GHz spacing DWDM mm-wave-band radio-on-fiber system using a supercontinuum light source and arrayed-waveguide-grating filters. In: International Topical Meeting on Microwave Photonics, pp. 1–4 (2006)

  107. Olmos, J.J.V., Kuri, T., Kitayama, K.: Dynamic reconfigurable WDM 60-GHz millimeter-waveband radio-over-fiber access network: architectural considerations and experiment. J. Lightwave Technol. 25(11), 3374–3380 (2007)

    Article  Google Scholar 

  108. Klinkowski, M., Jaworski, M., Careglio, D.: Channel allocation in densewavelength division multiplexing radio-over-fiber networks. In: International Conference on Transparent Optical Networks (ICTON), pp. 1–4 (2010)

  109. Shih, P.-T., Lin, C.-T., Huang, H.-S., Jiang Jr, W., Chen, J., Ng’oma, A., Sauer, M., Chi, S.: 13.75-Gb/s OFDM signal generation for 60-GHz RoF system within 7-GHz license-free band via frequency sextupling. In: 35th European Conference on Optical Communication (ECOC), pp. 1–2 (2009)

  110. Iness, J., Mukherjee, B.: New optical amplifier placement schemes for broadcast networks. Eur. Trans. Telecommun. Relat. Technol. 11(1), 117–124 (2000)

    Article  Google Scholar 

  111. Tran, A.V., Tucker, R.S., Boland, N.L.: Amplifier placement methods for metropolitan WDM ring networks. J. Lightwave Technol. 22(11), 2509–2522 (2004)

    Article  Google Scholar 

  112. Beas, J., Castanón, G., Aldaya, I., Campuzano, G., Aragón-Zavala, A.: Design framework for mm-wave frequency radio-over-fiber land access networks. In: 15th International Conference on Transparent Optical Networks (ICTON), pp. 1–4 (2013)

  113. Beas, J., Castanón, G., Aldaya, I., Aragón-Zavala, A., Campuzano, G.: Radio over fiber access networks for broadband wireless communications. In: Communication in Transportation Systems, pp. 235–263 (2013)

  114. The Fiber Optic Association, Inc. Fiber optic network optical wavelength transmission bands. In: Reference Guide To Fiber Optics, pp. 1–1. http://www.thefoa.org/tech/ref/OSP/OSPdatalink.html (2011)

  115. de Monterrey, T.: Smart cities summit guadalajara. http://www.gda.itesm.mx/agenda/evento.php?cual=1440 (2014)

  116. Aldaya, I., Campuzano, G., Gosset, C., Castañón, G.: Simultaneous generation of WDM PON and RoF signals using a hybrid mode-locked laser. In: International Conference on Transparent Optical Networks (ICTON), pp. 1–4 (2014)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerardo Castañón.

Appendix 1: Calculation of effective gain of an optical amplifier

Appendix 1: Calculation of effective gain of an optical amplifier

The signal-to-noise ratio (SNR) at the output of the PD can be expressed in terms of the PD responsivity, R, the received optical power, \(P_{\text {RX}}\), and the power of the noise, \(P_{\text {N}}\), according to the next expression:

$$\begin{aligned} \text {SNR}=\frac{P_{\text {S}}}{P_{\text {N}}}=\frac{(R\cdot P_{\text {RX}})^2}{P_{\text {N}}}. \end{aligned}$$
(7)

\(P_{\text {RX}}\) in turn, depends on the transmitted power \(P_{\text {T}}\) at the output of the CS, the gain of the optical amplifier. \(G_{\text {OA}}\), and the losses in the span from CS to BS, which can be divided in two distances: from CS to the optical amplifier and from the amplifier to the BS, \(L_1\) and \(L_2\), respectively:

$$\begin{aligned} P_{\text {RX}}=\frac{G_{\text {OA}}}{L_1\cdot L_2}P_{T}. \end{aligned}$$
(8)

On the other hand, noise has two contributions: the noise of the PD, and the noise induced by the ASE of the optical amplifier. Consequently, \(P_{\text {N}}\) can be written as:

$$\begin{aligned} P_{\text {N}}=P_{\text {N}_{\text {PD}}}+P_{\text {N}_{\text {amp}}} \end{aligned}$$
(9)

Assuming that the power of the ASE noise is much lower than the amplified signal power, the noise added by the amplifier appears as a beating term between the signal and the ASE noise:

$$\begin{aligned} P_{\text {N}_{\text {amp}}}=2\cdot R^2 \cdot P_{\text {RX}} \cdot \frac{P_{\text {ASE}}}{L_2}, \end{aligned}$$
(10)

where \(P_{\text {ASE}}\) stands for the ASE noise given by:

$$\begin{aligned} P_{\text {ASE}} = \hbar \cdot \omega \cdot n_{\text {sp}}\cdot (G_{\text {OA}}-1)\cdot \Delta \nu _{\text {opt}}, \end{aligned}$$
(11)

with the product \(\hbar \cdot \omega \) representing the energy of each photon, \(n_{\text {sp}}\), the spontaneous emission factor, and \(\Delta \nu _{\text {opt}}\) the bandwidth of the optical signal. \(n_{\text {sp}}\) can be written in terms of the amplifier noise factor (NF) as:

$$\begin{aligned} n_{\text {sp}}=\frac{G_{\text {OA}}}{2\cdot (G_{\text {OA}}-1)}NF, \end{aligned}$$
(12)

whereas \(\Delta \nu _{\text {opt}}\) is related to the signal RF bandwidth, BW, through:

$$\begin{aligned} \Delta \nu _{\text {opt}} = 2\cdot {\text {BW}}. \end{aligned}$$
(13)

Hence, \(P_{\text {ASE}}\) can be rewritten as:

$$\begin{aligned} P_{\text {ASE}}= & {} \hbar \cdot \omega \cdot \frac{G_{\text {OA}}}{2{(G_{\text {OA}}-1)}} {\text {NF}} \cdot (G_{\text {OA}}-1) \cdot {\text {2BW}}\nonumber \\= & {} \hbar \cdot \omega \cdot {\text {NF}}\cdot {\text {BW}}. \end{aligned}$$
(14)

Therefore, combining Eqs. 710 and Eq. 14, the SNR acquires the form of:

$$\begin{aligned} \text {SNR}=\frac{\left( R\frac{G_{\text {OA}}}{L_1L_2}P_{\text {T}}\right) ^2}{P_{\text {N}_{\text {PD}}}+2\cdot R^2\cdot P_{\text {RX}}\frac{1}{L_2}\hbar \omega \cdot {\text {NF}} \cdot {\text {BW}}}. \end{aligned}$$
(15)

It is possible to define an effective amplifier gain, \(G_{\text {eff}}\), that account for the SNR penalty induced by the ASE noise. The SNR in terms of \(G_{\text {eff}}\) can be written as:

$$\begin{aligned} \text {SNR}=\frac{\left( R\frac{G_{\text {eff}}}{L_1L_2}P_{\text {T}}\right) ^2}{P_{\text {N}_{\text {PD}}}}. \end{aligned}$$
(16)

Equaling Eqs. 15 and 16, we get an expression for the \(G_{\text {eff}}\):

$$\begin{aligned} G_{\text {eff}}=\sqrt{\frac{P_{\text {N}_{\text {PD}}}}{P_{\text {N}_{\text {PD}}}+2\cdot R^2\cdot P_{\text {RX}}\frac{1}{L_2}\hbar \omega \cdot {\text {NF}} \cdot {\text {BW}}}}\cdot G_{\text {OA}}.\nonumber \\ \end{aligned}$$
(17)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beas, J., Castañón, G., Orozco, F. et al. Knowledge-based framework for the design of millimeter-wave (60 GHz) radio over fiber land networks. Photon Netw Commun 30, 234–260 (2015). https://doi.org/10.1007/s11107-015-0514-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11107-015-0514-2

Keywords

Navigation