Skip to main content
Log in

Structural Engineering of Impregnated Dispenser Cathodes

  • STRUCTURAL MATERIALS RESEARCH
  • Published:
Powder Metallurgy and Metal Ceramics Aims and scope

Targeted research efforts focusing on the properties and structure of impregnated dispenser cathodes (IDCs) have been monitored. The data are summarized in terms of scale structural hierarchy in inorganic materials to develop principles for controlling their formation in the design of high-emission and long-life IDCs. The performance of IDCs of different types is modeled using the materials science triad ‘chemical composition ↔ structure ↔ properties’ and the concept of structural hierarchical levels in IDCs. Basic structural levels in IDCs are determined: electronic, nanostructured, mesoscopic, microscopic, and macroscopic. Their structural elements are analyzed: electrons, emitter layer, film coating, matrix and emission material, and cathode structure. It is found out that the electronic level is the key one in the hierarchy of IDC structural levels; its effectiveness depends on the nanocrystalline, mesoscopic, and microscopic levels. The principles of structural engineering are developed for the design of high-emission and long-life IDCs and for the control of their formation at nanostructured and microscopic levels by variation in the chemical composition and structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. Auger peaks are further written in short form (Ba75, Ba590, etc.).

References

  1. V. V. Skorokhod, “Hierarchic concept of structural levels and structural engineering of inorganic materials,” Powder Metall. Met. Ceram., 48, No. 7–8, 396–405 (2009).

    Article  Google Scholar 

  2. B. Ch. Dyubua and A. N. Korolev, “Modern efficient cathodes (To the history of their development at the Research and Production Corporation Istok),” Élektron. Tekh., Ser. 1. SVCh-Tekh., Issue 1 (508), 5–24 (2011).

  3. G. A. Kudintseva, A. I. Melnikov, A. V. Morozov, et al., Thermionic Cathodes [in Russian], Énergiya, Moscow–Leningrad (1966), p. 368.

    Google Scholar 

  4. J. L. Cronin, “Modern dispenser cathodes,” IEE Proc., 128, No 1, 19–32 (1981).

    Article  Google Scholar 

  5. B. Ch. Dyubua, “Modern effective cathodes,” Radiotekhnika, No. 4, 55–60 (1999).

    Google Scholar 

  6. P. Zalm and A. I. A. van Stratum, “Osmium dispenser cathodes,” Philips Tech. Rev., 27, No. 3–4, 69–75 (1966).

    Google Scholar 

  7. G. K. Bhide and F. E. Wray, “Sputtered metallic coatings on barium aluminate cathodes for lower operating temperatures,” J. Phys. D: Appl. Phys., 3, No. 3, 443–447 (1970).

    Article  Google Scholar 

  8. V. I. Nekrasov and A. V. Druzhinin, “Emissive properties of dispenser cathodes with sputtered metallic films,” Radiotekh. Élektron., 15, No. 2, 411–413 (1970).

    Google Scholar 

  9. Yu. V. Gurkov and A. V. Druzhinin, “Emissive parameters of osmium impregnated hot cathode,” Izv. Akad. Nauk SSSR. Ser. Fiz., 43, No. 9, 1850–1854 (1979).

    Google Scholar 

  10. S. Yamamato, S. Tagushi, T. Aida, et al., “Some fundamental properties of Sc2O3 mixed matrix impregnated cathodes,” Appl. Surf. Sci., 17, No. 4, 504–516 (1984).

    Article  Google Scholar 

  11. Yu. I. Nabokov and V. V. Svintsov, “Study of emission properties, life, and elemental composition of scandium impregnated cathodes,” Élektron. Tekh., Ser. SVCh-Tekh., Issue 8(442), 32–38 (1991).

  12. V. F. Shnyukov, A. E. Lushkin, O. I. Get’man, et al., “Effect of scandium on the properties of impregnated cathodes,” Izv. RAN Ser. Fiz., 58, No. 10, 171–175 (1994).

    Google Scholar 

  13. G. Gartner, P. Geittner, H. Lydtin, et al., “Emission properties of top-layer scandate cathodes prepared by LAD,” Appl. Surf. Sci., 111, 11–17 (1997).

    Article  Google Scholar 

  14. O. I. Get’man, S. P. Rakitin, V. V. Panichkina, et al., “Effect of the phase composition of barium–calcium alumoscandates on the emission properties of impregnated cathodes,” Powder Metall. Met. Ceram., 39, No. 11–12, 584–589 (2000).

    Article  Google Scholar 

  15. S. P. Rakitin, V. V. Panichkina, O. I. Get’man, et al., “Emission of high-current impregnated scandate cathodes,” in: Fundamental Milestones of Science. Chemistry and Scientific Basis of Promising Technologies [in Ukrainian], Akademperiodika, Kiev (2005), pp. 224–238.

  16. I. V. Yudinskaya, M. V. Paromova, L. N. Lykova, et al., “Synthesis and study of the thermal stability and emissivity of barium scandate,” Izv. Akad. Nauk SSSR. Neorg. Mater., 11, No. 10, 1805–1808 (1975).

    Google Scholar 

  17. A. van Oostrom and L. Augustus, “Activation and early life of a pressed barium scandate cathode,” Appl. Surf. Sci., 2, No. 2, 173–186 (1979).

    Article  Google Scholar 

  18. V. N. Dmitrieva, E. S. Zhmud’, Z. N. Marycheva, et al., “Properties of barium–calcium aluminates and aluminosilicates and their interaction with tungsten,” Élektron. Tekh., Ser. 1. SVCh-Tekh., Issue 12, 135–148 (1968).

  19. V. N. Dmitrieva, “Potential increase in the life of effective heat cathodes based on barium–calcium and tungsten salts,” Vopr. Radioélektron. Ser. 1. Élektron., No. 5, 156–174 (1965).

  20. R. A. Lipeles and H. K. A. Kan, “Chemical stability of barium calcium aluminate dispenser cathode impregnants,” Appl. Surf. Sci., 16, 189–206 (1983).

    Article  Google Scholar 

  21. E. C. Rittner, “On the mechanism of operation of the type B impregnated cathode,” J. Appl. Phys., 48, No. 10, 4344–4346 (1977).

    Article  Google Scholar 

  22. R. Forman, “Correlation of electron emission with changes in the surface concentration of barium and oxygen on a tungsten surface,” Appl. Surf. Sci., 17, 429–462 (1984).

    Article  Google Scholar 

  23. G. A Haas, C. R. K. Marrian, and A. Shih, “Interpretation of AES data of impregnated cathodes,” Appl. Surf. Sci., 3–4, 430–446 (1985).

  24. C. R. K. Marrian, A. Shih, and G. A. Haas, “The characterization of the surfaces of tungsten-based dispenser cathodes,” Appl. Surf. Sci., 16, No. 1–2, 1–24 (1983).

    Article  Google Scholar 

  25. H. Ahmed and A. H. W. Beck, “Thermionic emission from dispenser cathodes,” J. Appl. Phys., 34, No. 4, 997–998 (1963).

    Article  Google Scholar 

  26. V. I. Nekrasov, L. B. Rozenfeld, A. V. Druzhinin, et al., “Study of dispenser thermionic cathodes with a reflection microscope,” Izv. Akad. Nauk SSSR. Ser. Fiz., 34, No. 7, 1509–1512 (1970).

    Google Scholar 

  27. A. V. Druzhinin, “Migration of barium over the surface of tungsten, molybdenum, and rhenium coated with adsorbed gas film,” Radiotekh. Élektron., 10, No. 3, 498–504 (1965).

    Google Scholar 

  28. Yu. V. Gurkov, A. V. Druzhinin, T. A. Kupriyanova, et al., “Emission microscopy and X-ray spectroscopy of an impregnated cathode,” Izv. Akad. Nauk SSSR. Ser. Fiz., 38, No. 11, 2270–2274 (1974).

    Google Scholar 

  29. A. V. Druzhinin, Yu. A. Kondrashenkov, and V. I. Nekrasov, “Emission inhomogeneity of effective thermionic cathodes,” Izv. Akad. Nauk SSSR. Ser. Fiz., 33, No. 3, 413–420 (1969).

    Google Scholar 

  30. R. S. Bakhtiyarov and B. B. Shishkin, “Complex electron optic analysis of effective thermionic cathodes,” Zh. Tekh. Fiz., 42, No. 10, 2229–2238 (1972).

    Google Scholar 

  31. O. I. Get’man, A. E. Lushkin, V. V. Panichkina, et al., “On causes of low emissive capacity of impregnated cathodes,” Izv. RAN Ser. Fiz., 58, No. 10, 76–79 (1994).

    Google Scholar 

  32. N. D. Morgulis, “Physical properties and calculation of a porous barium–tungsten cathode,” Radiotekh. Élektron., 2, No. 12, 1471–1478 (1957).

    Google Scholar 

  33. R. Forman, “Proposed physical model for the impregnated tungsten cathode based on auger surface studies of the Ba–O–W system,” Appl. Surf. Sci., 2, No. 2, 258–274 (1979).

    Article  Google Scholar 

  34. O. K. Kultashev, A. P. Makarov, T. M. Novikova, et al., “Thermodynamic conditions for emissive phases on the surface of an impregnated aluminate cathode,” Élektron. Tekh., Ser. 1. SVCh-Tekh., No. 11, 38–49 (1979).

  35. L. A. Ashkinazi and M. L. Gainer, “Model for change in the surface composition of a WВa cathode during operation,” Izv. RAN Ser. Fiz., 58, No. 10, 176–179 (1994).

    Google Scholar 

  36. A. P. Makarov and O. K. Kuliashev, “A work model for barium dispenser cathodes with the surface coated by metal Os, Ir, or Os (Ir )–W alloy layer,” Appl. Surf. Sci., 111, 56–59 (1997).

    Article  Google Scholar 

  37. A. P. Makarov, “Life model of coated and uncoated thermionic dispenser cathodes,” in: Proc. 5th Int. Conf. Vacuum Electron Sources, IVESC2004, Beijing (2004), pp. 68–70.

  38. B. Ch. Dyubua, O. K. Kultashev, and O. V. Polivnikova, “Emission electronics, nanotechnology, and synergetics (To the history of ideas in cathode engineering),” Élektron. Tekh., Ser. SVCh-Tekh., Issue 4 (497), 3–22 (2008).

  39. A. S. Dolgov, A. I. Oranskii, and D. A. Oranskaya, “Assessing the feasibility of designing metal porous cathodes with heterogeneous sandwich-type metal structure,” Radioelektron. Comp. Syst., No. 4 (56), 21–28 (2012).

  40. O. I. Get’man and V. V. Skorokhod, “Hierarchy of structural levels in impregnated thermionic cathodes,” in: Proc. Int. Conf. High Mat. Tech. 2009 [in Russian], Inst. Probl. Materialoved. NAN Ukrainy, Kiev (2009), p. 320.

  41. V. S. Fomenko, Emission Properties of Materials: Handbook [in Russian], Naukova Dumka, Kiev (1981).

    Google Scholar 

  42. I. I. Bekh, O. V. Verbitska, V. V. Il’chenko, et al., “Mechanism of the effect of electric field on the properties of metal porous emitters,” Visn. Kyiv. Univ. Ser. Fiz. Mat. Nauki, Issue 3, Kyiv (2010), pp. 211–216.

  43. S. I. Plankovskii, “Defining the parameters of energy band structure of electrons in semiconductor cathodes of donor type,” in: Zbir. Nauk. Prats Kharkiv. Univ. Povitr. Syl Kozheduba, No. 3 (18), 47–51 (2008).

  44. W. Müller, “Electronic structure of BaO/W cathode surfaces,” IEEE Trans. Electron Devices, 36, No. 1, 180–187 (1989).

    Article  Google Scholar 

  45. W. Müller, “Work functions for models of scandate surfaces,” Appl. Surf. Sci., 111, 30–34 (1997).

    Article  Google Scholar 

  46. S. Yamamoto, S. Tagushi, T. Aida, et al., “Electron emission properties and surface atom behavior of impregnated cathodes with rear earth oxide mixed matrix base metals,” Appl. Surf. Sci., 20, No. 1–2, 69–83 (1984).

    Google Scholar 

  47. B. Ch. Dyubua, A. G. Mikhal’chenkov, O. V. Polivnikova, and M. P. Temiryazeva, “Effect of the surface structure of impregnated cathodes on their emission properties,” Élektron. Tekh., Ser. 1. SVCh-Tekh., Issue 1 (504), 25–34 (2010).

  48. A. V. Druzhinin, A. I. Mel’nikov, and V. I. Nekrasov, “Limiting emission current of an impregnated aluminate cathode,” Radiotekh. Élektron., 12, No. 5, 862–866 (1967).

    Google Scholar 

  49. A. V. Druzhinin, G. P. Egorov, Ya. I. Mestechkin, and V. I. Nekrasov, “Resistance of an emitter layer of an impregnated cathode,” Élektron. Tekh., Ser. 1. SVCh-Tekh., No. 9, 56–63 (1977).

  50. R. A. Tuck, “Surface studies of thermionic emitters by methods unique to them,” Appl. Surf. Sci., 2, No. 2, 128–148 (1979).

    Article  Google Scholar 

  51. M. Riedel, H. Dusterhoft, and F. Nagel, “Investigation of tungsten cathodes activated with Ba2CaWO6,” Vacuum, 61, 169–173 (2001).

    Article  Google Scholar 

  52. O. K. Kultashev and A. P. Makarov, “Effect of oxygen adsorption on electron and adsorption properties of barium atoms on tungsten planes (100), (110), and (111),” Izv. Akad. Nauk SSSR. Ser. Fiz., 38, No. 2, 317 (1974).

    Google Scholar 

  53. L. A. Vermenko, O. I. Get’man, and S. P. Rakitin, “Effect of the size of tungsten powder particles on the structure and properties of impregnated cathodes,” Élektron. Tekh., Ser. 6. Mater., Issue 2, 25–32 (1980).

  54. A. V. Druzhinin, “Limiting parameters of barium cathodes,” Élektron. Tekh., Ser. SVCh-Tekh., Issue 8, 27–33 (1980).

  55. P. Palluel and A. M. Shroff, “Experimental mechanism of operation of the type B impregnated cathode behavior, emission and life,” J. Appl. Phys., 51, No. 5, 2894–2902 (1980).

    Article  Google Scholar 

  56. O. I. Get’man, V. V. Skorokhod, and N. A. Krylova, “Microstructural stabilization of tungsten matrices of impregnated cathodes,” in: Electrical Contacts and Electrodes [in Russian], Inst. Probl. Materialoved. NAN Ukrainy, Kiev (2014), pp. 182–190.

  57. O. I. Get’man, A. E. Korol’kov, M. A. Mikhailenko, et al., “Structural evolution of an impregnated cathode with a tungsten matrix during operation,” Élektron. Tekh., Ser. 6. Mater., Issue 5, 17–24 (1991).

  58. N. P. Brodnikovskii, L. A. Vermenko, O. I. Konovalyuk, et al., “Structure and properties of barium–calcium aluminates (3–x)BaO × xCaO × A12O3,” Élektron. Tekh., Ser. 6. Mater., Issue 4, 20–28 (1980).

  59. A. M. Zyablikova and V. I. Nekrasov, “Some parameters of osmium-coated impregnated cathodes,” Élektron. Tekh., Ser. 1. SVCh-Tekh., Issue 7, 157–159 (1970).

  60. M. C. Green and R. A. Tuck, “Recent studies of the chemical and physical processes in thermionic cathodes,” in: Proc. 8th Eur. Microwave Conference’78, Paris (1978), pp. 730–744.

  61. O. I. Get’man, A. E. Lushkin, V. V. Panichkina, and S. P. Rakitin, “Effect of microstructure on the mechanism of emission for tungsten–barium dispenser cathodes,” Powder Metall. Met. Ceram., 44, No. 11–12, 598–607 (2005).

    Article  Google Scholar 

  62. S. Kimura, T. Higuchi, Y. Ouchi, et al., “Emission characteristics of dispenser cathodes with a fine-grained tungsten top layer,” Appl. Surf. Sci., 111, 60–63 (1997).

    Article  Google Scholar 

  63. T. Higuchi, O. Nakamura, S. Matsumoto, et al., “Pore geometry of dispenser cathode surface vs. emission characteristics, and Ba recovery characteristics after ion bombardment,” Appl. Surf. Sci., 146, 51–61 (1999).

    Article  Google Scholar 

  64. V. I. Kozlov, V. V. Sobolev, V. A. Osipov, et al., “Dependence of emission parameters of an impregnated cathode with osmium film on the composition and structure of different cathode parts,” Élektron. Tekh., Ser. 1. SVCh-Tekh., Issue 11, 62–69 (1975).

  65. O. I. Getman and V. V. Panichkina, “Microstructure degradation of thin films on the emission surface of impregnated cathodes,” Funct. Mater., 8, No. 1, 62–66 (2001).

    Google Scholar 

  66. V. I. Kozlov, V. A. Osipov, A. A. Andreev, et al., “Some methods of increasing the life of impregnated cathodes with osmium film,” Élektron. Tekh., Ser. 1. SVCh-Tekh., Issue 12, 78–83 (1975).

  67. Ya. L. Virin and B. Ch. Dyubua, “Emission properties of osmium-based impregnated cathodes,” Izv. Akad. Nauk SSSR. Ser. Fiz., 43, No. 3, 662–663 (1979).

    Google Scholar 

  68. Ya. L. Virin and B. Ch. Dyubua, “Tungsten–rhenium cathodes with osmium film,” Élektron. Tekh., Ser. SVCh-Tekh., Issue 9 (357), 39–40 (1983).

  69. V. V. Svintsov, “Application of electron Auger spectroscopy for studying the surface chemical composition of impregnated cathodes,” Élektron. Tekh., Ser. SVCh-Tekh., Issue 6, 36–41 (1990).

  70. A. P. Makarov, O. K. Kultashev, E. D. Kuranova, et al., “Mechanism of the performance and ageing of an osmium-coated impregnated cathode,” Radiotekh. Élektron., 36, No. 11, 2196–2201 (1991).

    Google Scholar 

  71. R. Forman, “Surface studies on the low work function surface complex of barium on an osmium–ruthenium substrate,” Appl. Surf. Sci., 29, 127–142 (1987).

    Article  Google Scholar 

  72. D. Brion, J. C. Tonnerre, and A. M. Shroff, “Auger spectroscopy investigations of various types of impregnated cathodes,” Appl. Surf. Sci., 16, 55–72 (1983).

    Article  Google Scholar 

  73. D. Brion, J. C. Tonnerre, and A. M. Shroff, “Electron emission and surface composition of osmium and osmium–tungsten coated dispenser cathodes,” Appl. Surf. Sci., 20, 429–456 (1985).

    Article  Google Scholar 

  74. R. Forman, “Auger studies comparing the surface concentration of Ba of W impregnated and M-cathodes,” Appl. Surf. Sci., 24, 587–598 (1985).

    Article  Google Scholar 

  75. B. Ch. Byubua, E. M. Zemchikhin, A. P. Makarov, et al., “Emission properties and life of impregnated cathodes,” Radiotekh. Élektron., 36, No. 5, 985–993 (1991).

    Google Scholar 

  76. V. F. Shnyukov, B. I. Mikhailovskii, A. E. Lushkin, et al., “Studying the surface composition of impregnated cathodes with electron Auger spectroscopy,” Élektron. Tekh., Ser. 1. SVCh-Tekh., Issue 8 (392), 30–33 (1986).

  77. A. A. Gugnin, B. Ch. Dyubua, and L. V. Nevskaya, “Dispenser cathodes based on barium salts and tungsten alloys with molybdenum and rhenium,” Vopr. Radioélektron. Ser. 1. Élektron., Issue 11, 117–122 (1964).

  78. A. I. Mel’nikov, V. I. Nekrasov, L. V. Nevskaya, et al., “Application of rhenium–tungsten powder alloys for the fabrication of aluminate cathodes,” Élektron. Tekh., Ser. 1. SVCh-Tekh., Issue 3, 167–168 (1967).

  79. O. I. Get’man, V. V. Panichkina, S. P. Rakitin, et al., “Use of powders of the tungsten–rhenium alloys for the preparation of impregnated cathode skeletons. II. Emission capabilities of barium containing impregnated cathodes with tungsten–rhenium alloy skeletons,” Powder Metall. Met. Ceram., 38, No. 1–2, 23–27 (1999).

    Article  Google Scholar 

  80. V. F. Shnyukov, B. I. Mikhailovskii, A. E. Lushkin, et al., “Effect of thermal vacuum treatment of impregnated cathodes on their physicochemical and emission properties,” Élektron. Tekh., Ser. 1. SVCh-Tekh., Issue 5, 24–28 (1991).

  81. S. V. Karpukhin and A. Yu. Kamertsel’, “Surface diagnosis of impregnated cathodes with different cellular composition,” Izv. Akad. Nauk SSSR. Ser. Fiz., 52, No. 8, 1628–1630 (1988).

    Google Scholar 

  82. G. A. Haas and A. Shih, “Auger characteristics of BaO layers on various substrates,” Appl. Surf. Sci., 31, Issue 2, 239–252 (1988).

    Article  Google Scholar 

  83. I. I. Bekh, O. I. Getman, V. V. Il’chenko, et al., “Influence of matrix material on the mechanism of emission from Sc–Ba impregnated thermionic emitters,” Ukr. J. Phys., 54, No. 3, 297–302 (2009).

    Google Scholar 

  84. O. I. Get’man and V. V. Panichkina, “Effect of Os–Ir–Al film on the emission properties of scandate cathodes,” in: Proc. 3rd Int. Conf. Materials and Coatings in Extreme Applications [in Russian], Inst. Probl. Materialoved. NAN UKrainy, Kiev (2004), pp. 328–329.

  85. J. Wang, X. Zhang, W. Liu, et al., “Preparation and emission property of scandia pressed cathode,” J. Rare Earths, 28, Spec. Issue, 460–463 (2010).

  86. Y. Wang and T. Pan, “Investigation of pulsed laser depositing Sc-coated cathode,” Appl. Surf. Sci., 146, 62–68 (1999).

    Article  Google Scholar 

  87. V. G. Vorozheikin, Yu. I. Nabokov, V. I. Kozlov, et al., “Poisoning resistance of impregnated cathodes,” Élektron. Tekh., Ser. 1. SVCh-Tekh., No. 11, 56–58 (1975).

  88. V. F. Shnyukov, B. I. Mikhailovskii, A. E. Lushkin, et al., “Studying the properties of impregnated cathodes in hydrogen atmosphere,” Élektron. Tekh., Ser. 1. SVCh-Tekh., Issue 9 (369), 40–43 (1984).

  89. O. I. Get’man, V. V. Panichkina, S. P. Rakitin, et al., “Use of powders of the tungsten–rhenium alloys for the preparation of impregnated cathode skeletons. I. Densification and formation of porous structure in sintering of powders of tungsten–rhenium alloys,” Powder Metall. Met. Ceram., 37, No. 11–12, 618–625 (1998).

    Article  Google Scholar 

  90. V. A. Smirnov, L. I. Zubov, Yu. A. Potapova, et al., “Examining the structure and emission homogeneity of impregnated cathodes,” in: Proc. 22nd Conf. Emission Electronics [in Russian], Vol. 1, Mosk. Inzh. Fiz. Inst. RAN, Moscow (1994), p. 218.

  91. A. V. Andronov, V. N. Ilin, V. A. Khmara, et al., “Metal-porous cathodes—effective sources of electron emission for high power gyrotrons,” in: Proc. IVESC`96, Eindhoven, Netherlands (1996), p. 911.

  92. M. Ya. Vasilchuk, S. P. Rakitin, and O. I. Get’man, Impregnated Cathode [in Ukrainian], Ukrainian Patent No. 10312, IPC H01J 1/13, H01J 19/00; Research Institute Orion (patent holder), No. 94076436, Bull. No. 4, publ. December 25 (1996).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. I. Get’man.

Additional information

Translated from Poroshkovaya Metallurgiya, Vol. 53, Nos. 11–12 (500), pp. 104–131, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Get’man, O.I., Skorokhod, V.V. Structural Engineering of Impregnated Dispenser Cathodes. Powder Metall Met Ceram 53, 701–721 (2015). https://doi.org/10.1007/s11106-015-9666-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11106-015-9666-y

Keywords

Navigation