Skip to main content
Log in

A Novel Wheat Nicotianamine Synthase Gene, TaNAS-D, Confers High Salt Tolerance in Transgenic Arabidopsis

  • Original Paper
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

Nicotianamine synthase (NAS) plays a pivotal role in balancing the concentrations of heavy metals in plants, but its characteristics and functions in salt stress responses are not completely understood, particularly in wheat. In this study, the salt-induced gene TaNAS-D was cloned from wheat and characterized. TaNAS-D, localized throughout the cell, is mainly expressed in developed vascular bundle tissues and is responsive to NaCl, ABA, and H2O2 stresses. Overexpression of TaNAS-D in Arabidopsis led to elevated NA levels and enhanced salt stress tolerance, which was demonstrated by higher germination rates and improved growth of TaNAS-D transgenic Arabidopsis plants compared with WT when exposed to salt stress. Further investigation revealed that TaNAS-D transgenic Arabidopsis plants displayed higher K+/Na+ ratios, lower malondialdehyde (MDA) levels, and less ion leakage (IL) consistently accompanied by increased peroxidase (POD), superoxide dismutase (SOD), and catalase (CAT) activities, thereby reducing membrane injury. Moreover, TaNAS-D overexpression under salt stress increased AtSOS1, AtSOS2, AtSOS3, AtFAD5, and AtSAD1 transcript levels. These findings indicate that TaNAS-D plays a positive role in salt tolerance by improving the antioxidant defense system and upregulating salt overly sensitive (SOS) pathway genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

NAS:

Nicotianamine synthase

GFP:

Green fluorescent protein

ABA:

Abscisic acid

CaMV:

Cauliflower mosaic virus

MS:

Murashige and Skoog

ORF:

Open reading frame

qRT-PCR:

Quantitative real-time reverse transcription-PCR

MDA:

Malondialdehyde

IL:

Ion leakage

POD:

Peroxidase

SOD:

Superoxide dismutase

CAT:

Catalase

SOS:

Salt overly sensitive

References

  • Ahmad P, Jaleel CA, Salem MA, Nabi G, Sharma S (2010) Roles of enzymatic and nonenzymatic antioxidants in plants during abiotic stress. Crit Rev Biotechnol 30:161–175. doi:10.3109/07388550903524243

    Article  CAS  PubMed  Google Scholar 

  • Arnon DI (1949) Copper enzymes in isolated chloroplasts Polyphenoloxidase in Beta vulgaris. Plant Physiol 24:1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bartels D, Sunkar R (2005) Drought and salt tolerance in plants. Crit Rev Plant Sci 24:23–58

    Article  CAS  Google Scholar 

  • Bohnert HJ, Nelson DE, Jensen RG (1995) Adaptations to environmental stresses. Plant Cell 7:1099–1111. doi:10.1105/tpc.7.7.1099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chinnusamy V, Zhu J, Zhu J-K (2006) Salt stress signaling and mechanisms of plant salt tolerance. In: Genetic engineering. Springer, pp 141–177

  • Cho K, O’Neill CM, Kwon SJ, Yang TJ, Smooker AM, Fraser F, Bancroft I (2010) Sequence-level comparative analysis of the Brassica napus genome around two stearoyl-ACP desaturase loci. Plant J 61:591–599. doi:10.1111/j.1365-313X.2009.04084.x

    Article  CAS  PubMed  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  CAS  PubMed  Google Scholar 

  • Deng X et al (2013) Ectopic expression of wheat TaCIPK14, encoding a calcineurin B-like protein-interacting protein kinase, confers salinity and cold tolerance in tobacco. Physiol Plant 149:367–377. doi:10.1111/ppl.12046

    CAS  PubMed  Google Scholar 

  • Douchkov D, Gryczka C, Stephan U, Hell R, Bäumlein H (2005) Ectopic expression of nicotianamine synthase genes results in improved iron accumulation and increased nickel tolerance in transgenic tobacco. Plant Cell Environ 28:365–374

    Article  CAS  Google Scholar 

  • Flowers T (2004) Improving crop salt tolerance. J Exp Bot 55:307–319

    Article  CAS  PubMed  Google Scholar 

  • Guan LM, Zhao J, Scandalios JG (2000) Cis-elements and trans-factors that regulate expression of the maize Cat1 antioxidant gene in response to ABA and osmotic stress: H2O2 is the likely intermediary signaling molecule for the response. Plant J 22:87–95

    Article  CAS  PubMed  Google Scholar 

  • Haydon MJ, Kawachi M, Wirtz M, Hillmer S, Hell R, Krämer U (2012) Vacuolar nicotianamine has critical and distinct roles under iron deficiency and for zinc sequestration in Arabidopsis. Plant Cell 24:724–737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Higuchi K, Suzuki K, Nakanishi H, Yamaguchi H, Nishizawa N-K, Mori S (1999a) Cloning of nicotianamine synthase genes, novel genes involved in the biosynthesis of phytosiderophores. Plant Physiol 119:471–480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Higuchi K, Suzuki K, Nakanishi H, Yamaguchi H, Nishizawa N-K, Mori S (1999b) Cloning of nicotianamine synthase genes, novel genes involved in the biosynthesis of phytosiderophores. Plant Physiol 119:471–480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Higuchi K, Tani M, Nakanishi H, Yoshiwara T, Goto F, NISHIZAWA NK, Mori S (2001) The expression of a barley HνNAS1 nicotianamine synthase gene promoter-gus fusion gene in transgenic tobacco is induced by Fe-deficiency in roots. Biosci Biotechnol Biochem 65:1692–1696

    Article  CAS  PubMed  Google Scholar 

  • Hua S, Sun Z (2001) Support vector machine approach for protein subcellular localization prediction. Bioinformatics 17:721–728

    Article  CAS  PubMed  Google Scholar 

  • Hugly S, Somerville C (1992) A role for membrane lipid polyunsaturation in chloroplast biogenesis at low temperature. Plant Physiol 99:197–202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hussain TM, Hazara M, Sultan Z, Saleh BK, Gopal GR (2008) Recent advances in salt stress biology a review. Biotechnol Mol Biol Rev 3:8–13

    Google Scholar 

  • Johnson AA, Kyriacou B, Callahan DL, Carruthers L, Stangoulis J, Lombi E, Tester M (2011) Constitutive overexpression of the OsNAS gene family reveals single-gene strategies for effective iron-and zinc-biofortification of rice endosperm. PLoS One 6:e24476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim S et al (2005a) Increased nicotianamine biosynthesis confers enhanced tolerance of high levels of metals, in particular nickel, to plants. Plant Cell Physiol 46:1809–1818

    Article  CAS  PubMed  Google Scholar 

  • Kim S et al (2005b) Increased nicotianamine biosynthesis confers enhanced tolerance of high levels of metals, in particular nickel, to plants. Plant Cell Physiol 46:1809–1818. doi:10.1093/pcp/pci196

    Article  CAS  PubMed  Google Scholar 

  • Klatte M, Schuler M, Wirtz M, Fink-Straube C, Hell R, Bauer P (2009) The analysis of Arabidopsis nicotianamine synthase mutants reveals functions for nicotianamine in seed iron loading and iron deficiency responses. Plant Physiol 150:257–271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knight H, Knight MR (2001) Abiotic stress signalling pathways: specificity and cross-talk. Trends Plant Sci 6:262–267

    Article  CAS  PubMed  Google Scholar 

  • Koen E et al (2013) Arabidopsis thaliana nicotianamine synthase 4 is required for proper response to iron deficiency and to cadmium exposure. Plant Sci 209:1–11

    Article  CAS  PubMed  Google Scholar 

  • Kojima I, Iida C (1986) Vapor phase digestion of botanical samples with acids in sealed polyterafluoroethlylene bomb. Anal Sci 2:567–570

    Article  Google Scholar 

  • Kong F, Mao S, Du K, Wu M, Zhou X, Chu C, Wang Y (2011a) Comparative proteomics analysis of OsNAS1 transgenic Brassica napus under salt stress. Chin Sci Bull 56:2343–2350

    Article  CAS  Google Scholar 

  • Kong F, Mao S, Du K, Wu M, Zhou X, Chu C, Wang Y (2011b) Comparative proteomics analysis of OsNAS1 transgenic Brassica napus under salt stress. Chin Sci Bull 56:2343–2350

    Article  CAS  Google Scholar 

  • Lee S et al (2009) Iron fortification of rice seeds through activation of the nicotianamine synthase gene. Proc Natl Acad Sci U S A 106:22014–22019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ling HQ, Koch G, Baumlein H, Ganal MW (1999) Map-based cloning of chloronerva, a gene involved in iron uptake of higher plants encoding nicotianamine synthase. Proc Natl Acad Sci U S A 96:7098–7103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Martin JL, McMillan FM (2002) SAM (dependent) I AM: the S-adenosylmethionine-dependent methyltransferase fold. Curr Opin Struct Biol 12:783–793

    Article  CAS  PubMed  Google Scholar 

  • Masuda H et al (2009) Overexpression of the barley nicotianamine synthase gene HvNAS1 increases iron and zinc concentrations in rice grains. Rice 2:155–166

    Article  Google Scholar 

  • Munns R, James RA, Läuchli A (2006a) Approaches to increasing the salt tolerance of wheat and other cereals. J Exp Bot 57:1025–1043

    Article  CAS  PubMed  Google Scholar 

  • Munns R, James RA, Läuchli A (2006b) Approaches to increasing the salt tolerance of wheat and other cereals. J Exp Bot 57:1025–1043

    Article  CAS  PubMed  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Parida AK, Das AB (2005) Salt tolerance and salinity effects on plants: a review. Ecotox Environ Safe 60:324–349

    Article  CAS  Google Scholar 

  • Reddy AS, Ali GS, Celesnik H, Day IS (2011) Coping with stresses: roles of calcium-and calcium/calmodulin-regulated gene expression. Plant Cell Online 23:2010–2032

    Article  CAS  Google Scholar 

  • Ruiz-Lozano JM, Porcel R, Azcón C, Aroca R (2012) Regulation by arbuscular mycorrhizae of the integrated physiological response to salinity in plants: new challenges in physiological and molecular studies. J Exp Bot 63:4033–4044

    Article  CAS  PubMed  Google Scholar 

  • Schuler M, Bauer P (2011) Heavy metals need assistance: the contribution of nicotianamine to metal circulation throughout the plant and the Arabidopsis NAS gene family. Front Plant Sci 2:69. doi:10.3389/fpls.2011.00069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sears E (1966) Nullisomic-tetrasomic combinations in hexaploid wheat. In: Chromosome manipulations and plant genetics. Springer, pp 29–45

  • Shi H, Lee B-h, Wu S-J, Zhu J-K (2003) Overexpression of a plasma membrane Na+/H+ antiporter gene improves salt tolerance in Arabidopsis thaliana. Nat Biotechnol 21:81–85

    Article  CAS  PubMed  Google Scholar 

  • Shi H, Zhu J-K (2002) Regulation of expression of the vacuolar Na+/H+ antiporter gene AtNHX1 by salt stress and abscisic acid. Plant Mol Biol 50:543–550

    Article  CAS  PubMed  Google Scholar 

  • Takahashi M, Terada Y, Nakai I, Nakanishi H, Yoshimura E, Mori S, Nishizawa NK (2003) Role of nicotianamine in the intracellular delivery of metals and plant reproductive development. Plant Cell 15:1263–1280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tian S, Mao X, Zhang H, Chen S, Zhai C, Yang S, Jing R (2013) Cloning and characterization of TaSnRK2. 3, a novel SnRK2 gene in common wheat. J Exp Bot 64:2063–2080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vinocur B, Altman A (2005) Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Curr Opin Biotech 16:123–132

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1–14

    Article  CAS  PubMed  Google Scholar 

  • Xiong L, Schumaker KS, Zhu J-K (2002) Cell signaling during cold, drought, and salt stress. Plant Cell Online 14:S165–S183

    Article  CAS  Google Scholar 

  • Yang G et al (2015) Molecular cloning and characterization of MxNAS2, a gene encoding nicotianamine synthase in Malus xiaojinensis, with functions in tolerance to iron stress and misshapen flower in transgenic tobacco. Sci Hortic 183:77–86

    Article  CAS  Google Scholar 

  • Yang Q et al (2009) Overexpression of SOS (salt overly sensitive) genes increases salt tolerance in transgenic Arabidopsis. Mol Plant 2:22–31. doi:10.1093/mp/ssn058

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Han B, Wang T, Chen S, Li H, Zhang Y, Dai S (2012) Mechanisms of plant salt response: insights from proteomics. J Proteome Res 11:49–67. doi:10.1021/pr200861w

    Article  PubMed  Google Scholar 

  • Zhou X et al (2013) Genome-wide identification, classification and expression profiling of nicotianamine synthase (NAS) gene family in maize. BMC Genomics 14:238. doi:10.1186/1471-2164-14-238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu J-K (2000) Genetic analysis of plant salt tolerance using Arabidopsis. Plant Physiol 124:941–948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu J-K (2001) Plant salt tolerance. Trends Plant Sci 6:66–71

    Article  CAS  PubMed  Google Scholar 

  • Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273. doi:10.1146/annurev.arplant.53.091401.143329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu JK (2007) Plant salt stress. In: Encyclopedia of Life Sciences. Wiley, Hoboken

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Zhang or Junming Li.

Ethics declarations

Funding

This research was supported by grants from the National Natural Science Foundation of China (31401309), Hebei Provincial Science and Technology Research and Development Project (16226320D and 13966305D), and China Agriculture Research System (CARS-03-01B).

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Jie Han and Wei Zhang contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 368 kb)

ESM 2

(DOC 2061 kb)

ESM 3

(DOC 226 kb)

ESM 4

(DOC 294 kb)

ESM 5

(DOC 294 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, J., Zhang, W., Sun, L. et al. A Novel Wheat Nicotianamine Synthase Gene, TaNAS-D, Confers High Salt Tolerance in Transgenic Arabidopsis . Plant Mol Biol Rep 35, 252–264 (2017). https://doi.org/10.1007/s11105-016-1018-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-016-1018-7

Keywords

Navigation