Skip to main content
Log in

A Contig-Based Computational Prediction of Conserved miRNAs and Their Probable Role in Regulation of Cuticular Wax Biosynthesis in Banana

  • Original Paper
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

Banana has a high leaf area index and shallow root system, hence making it highly susceptible to water stress. One of the adaptive mechanisms is the deposition of cuticular wax on a leaf. Our previous analysis revealed the role of total cuticular wax, carbon chain length of the cuticular wax component, and the role of ester and alcohol wax compounds in maintaining the hydration of banana leaves which was further confirmed by gene expression analysis. To understand the regulatory mechanism of these wax genes in the present study, we have computationally mined and filtered miRNAs whose targets are involved in the wax biosynthetic process using M.balbisiana and M.acuminata transcriptome. Here, we predicted 96 and 62 conserved miRNA families and its targets in M.balbisiana and M.acuminata, respectively. Based on biochemical pathway, we filtered miRNAs and its targets which were involved in the wax biosynthetic process .Here, we report two miRNAs that are MbmiR531 whose target is KCS11 and MbmiR529 whose target is KCS10/FDH. The in silico characterization of MbmiR531 and MbmiR529 revealed that it had a strong, stable secondary structure with MFE of −23.4 and −26.5 kcal/mol, respectively, and MFEI value of −0.70 and −0.66 kcal/mol, respectively. Validation of the computational prediction was carried out on four high wax musa genotypes (990.6–1842.6 μg/dm2) and four low wax musa genotypes (424.1–780.2 μg/dm2) by qRT PCR which further revealed a negative relationship between the target gene and its miRNA thus indicating their role in wax biosynthesis regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Balcells I, Cirera S, Busk PK (2011) Specific and sensitive quantitative RT-PCR of miRNAs with DNA primers. BMC Biotechnol 11:70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baldrich P, Campo S, Wu M-T, Liu T-T, Hsing Y-IC, Segundo BS (2015) MicroRNA-mediated regulation of gene expression in the response of rice plants to fungal elicitors. RNA Biol 12:847–863

    Article  PubMed  PubMed Central  Google Scholar 

  • Barakat A, Wall K, Leebens-Mack J, Wang YJ, Carlson JE, Depamphilis CW (2007) Large-scale identification of microRNAs from a basal eudicot (Eschscholzia californica) and conservation in flowering plants. Plant J 51:991–1003, PMID: 17635767

    Article  CAS  PubMed  Google Scholar 

  • Barciszewska-Pacak M, Milanowska K, Knop K, Bielewicz D, Nuc P, Plewka P et al (2015) Arabidopsis microRNA expression regulation in a wide range of abiotic stress responses. Front Plant Sci 6:410

    Article  PubMed  PubMed Central  Google Scholar 

  • Bernard A, Joubes JE (2013) Arabidopsis cuticular waxes: advances in synthesis, export and regulation. Prog Lipid Res 52:110–129. doi:10.1016/j.plipres.2012.10.002

    Article  CAS  PubMed  Google Scholar 

  • Bi F, Meng X, Ma C, Yi G (2015) Identification of miRNAs involved in fruit ripening in Cavendish bananas by deep sequencing. BMC Genomics 16:1

    Article  Google Scholar 

  • Busk PK (2014) A tool for design of primers for microRNA-specific quantitative RT-qPCR. BMC Bioinf 28(15):29. doi:10.1186/1471-2105-15-29

    Article  Google Scholar 

  • Bustin SA, Nolan T (2004) Data analysis and interpretation. In: Bustin SA (ed) A-Z of quantitative PCR. International University line, CA, USA, pp 439–481

    Google Scholar 

  • Chai J, Feng R, Shi H, Ren M, Zhang Y, Wang J (2015) Bioinformatic identification and expression analysis of banana microRNAs and their targets. Plos One 10(4):e0123083

    Article  PubMed  PubMed Central  Google Scholar 

  • Chang S, Puryear J, Cairney J (1993) A simple and efficient method for isolating RNA from pine trees. Plant Mol Biol Report 11(2):113–116

    Article  CAS  Google Scholar 

  • Chen L, Zhong H et al (2011) Validation of reference genes for RT-qPCR studies of gene expression in banana fruit under different experimental conditions. Planta 234:377–390

    Article  CAS  PubMed  Google Scholar 

  • D’Hont A, Denoeud F et al (2012) The banana (Musa acuminata) genome and the evolution of monocotyledonous plants. Nature 488(7410):213–217

    Article  PubMed  Google Scholar 

  • Davey MW, Gudimella R et al (2013) Draft Musa balbisiana genome sequence for molecular genetics in polyploid, inter-and intra-specific Musa hybrids. BMC Genomics 14:683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dehury B, Panda D, Sahu J, Sahu M, Sarma K, Barooah M et al (2013) In silico identification and characterization of conserved miRNAs and their target genes in sweet potato (Ipomoea batatas L.) Expressed Sequence Tags (ESTs). Plant Signal Behav 8:e26543

    Article  PubMed  PubMed Central  Google Scholar 

  • Ebercon A, Blum A, Jordan WR (1977) Rapid colorimetric method for epicuticular wax contest of sorghum leaves. Crop Sci 17:179–180. doi:10.2135/cropsci1977.0011183X001700010047x

    Article  Google Scholar 

  • Food and Agriculture Organization of the United Nations (FAO 2012) [http://faostat.fao.org]

  • Gupta H, Tiwari T, Patel M, Mehta A, Ghosh A (2015) An approach to identify the novel miRNA encoded from H.Annuus EST sequences. Genom Data 6:139–144

    Article  PubMed  PubMed Central  Google Scholar 

  • Jones-Rhoades MW, Bartel DP, Bartel B (2006) MicroRNAs and their regulatory roles in plants. Annu Rev Plant Biol 57:19–53

    Article  CAS  PubMed  Google Scholar 

  • Joubes J, Raffaele S, Bourdenx B, Garcia C, Laroche-Traineau J, Moreau P et al (2008) The VLCFA elongase gene family 30 in Arabidopsis thaliana: phylogenetic analysis, 3D modelling and expression profiling. Plant Mol Biol 67:547–566. doi:10.1007/s11103-008-9339-z

    Article  CAS  PubMed  Google Scholar 

  • Khraiwesh B, Zhu J-K, Zhu J (2012) Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants. Biochim Biophys Acta 1819:137–148

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Jung JH, Lee SB, Go YS, Kim HJ, Cahoon R et al (2013) Arabidopsis 3-ketoacyl-coenzyme A synthase9 is involved in the synthesis of tetracosanoic acids as precursors of cuticular waxes, suberins, sphingolipids, and phospholipids. Plant Physiol 162:567–580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kozomara A, Griffiths-Jones S (2014) miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res 42:68–73. doi:10.1093/nar/gkt1181, PMID: 24275495

    Article  Google Scholar 

  • Kruszka K, Pacak A, Swida-Barteczka A, Nuc P, Alaba S, Wroblewska Z et al (2014) Transcriptionally and post-transcriptionally regulated microRNAs in heat stress response in barley. J Exp Bot 65:6123, eru353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kunst L, Samuels L (2009) Plant cuticles shine: advances in wax biosynthesis and export. Curr Opin Plant Biol 12(6):721–727

    Article  CAS  PubMed  Google Scholar 

  • Lee SB, Kim H, Kim RJ, Suh MC (2014) Overexpression of Arabidopsis MYB96 confers drought resistance in Camelina sativa via cuticular wax accumulation. Plant Cell Rep 33:1535–1546

    Article  CAS  PubMed  Google Scholar 

  • Levitt J (1972) Responses of plants to environmental stresses. Academic Press, New York

  • Lokesh U, Kiranmai K, Pandurangaiah M, Sudhakarbabu O, Nareshkumar A, Sudhakar C (2013) Role of plant fatty acid elongase (3 keto acyl-CoA synthase) gene in cuticular wax biosynthesis. J Agric Allied Sci 2:35–42

    Google Scholar 

  • Merchuk L, Saranga Y (2013) Breeding approaches to increasing water-use efficiency. In: Rengel Z (ed) Improving water and nutrient-use efficiency in food production systems. John Wiley & Sons Inc, Hoboken, pp 145–160

  • Nobusawa T, Okushima Y, Nagata N, Kojima M, Sakakibara H, Umeda M (2013) Synthesis of very-long-chain fatty acids in the epidermis controls plant organ growth by restricting cell proliferation. Plos Biol 11:e1001531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Numnark S, Mhuantong W, Ingsriswang S, Wichadakul D (2012) C-mii: a tool for plant miRNA and target identification. BMC Genomics 13:S16. doi:10.1186/1471-2164-13-S7-S16

    Article  PubMed  PubMed Central  Google Scholar 

  • Prakash P, Rajakani R, Gupta V (2015) Transcriptome-wide identification of Rauvolfia serpentina microRNAs and prediction of their potential targets. Comput Biol Chem 61:62–74

    Article  PubMed  Google Scholar 

  • Pruitt RE, Vielle-Calzada J-P, Ploense SE, Grossniklaus U et al (2000) FIDDLEHEAD, a gene required to suppress epidermal cell interactions in Arabidopsis, encodes a putative lipid biosynthetic enzyme. Proc Natl Acad Sci U S A 97:1311–1316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ravishankar KV, Megha HS, Rekha A, Ganesh NK, Veerraju C (2015) Insights into Musa balbisiana and Musa acuminata species divergence and development of genic microsatellites by transcriptomics approach. Plant Genet 4:78–82

    Article  Google Scholar 

  • Riederer M, Schreiber L (2001) Protecting against water loss: analysis of the barrier properties of plant cuticles. J Exp Bot 52:2023–2032. doi:10.1093/jexbot/52.363.2023

    Article  CAS  PubMed  Google Scholar 

  • Robinson J.C (1996) Banana and Plantains. Wallingford, UK

  • Sampangi-Ramaiah MH, Ravishankar KV (2016) Current status of banana genome in the age of next generation sequencing. In: Mohandas S, Ravishankar KV (eds) Banana: genomics and transgenic approaches for genetic improvement. Springer, Singapore, pp 51–59

    Chapter  Google Scholar 

  • Sampangi-Ramaiah MH, Ravishankar KV, Seetharamaiah SK, Roy TK, Hunashikatti L, Rekha A, Shilpa P (2016) Barrier against water loss: relationship between epicuticular wax composition, gene expression and leaf water retention capacity in banana. Funct Plant Biol 43:492–501

    Article  CAS  Google Scholar 

  • Samuels L, Kunst L, Jetter R (2008) Sealing plant surfaces: cuticular wax formation by epidermal cells. Plant Biol 59:683

    Article  CAS  Google Scholar 

  • Seo PJ, Park C-M (2011) Cuticular wax biosynthesis as a way of inducing drought resistance. Plant Signal Behav 6:1043–1045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seo PJ, Lee SB, Suh MC, Park M-J, Go YS, Park C-M (2011) The MYB96 transcription factor regulates cuticular wax biosynthesis under drought conditions in Arabidopsis. Plant Cell 23:1138–1152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shepherd T, Wynne Griffiths D (2006) The effects of stress on plant cuticular waxes. New Phytol 171:469–499

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Wang Q, Wang B (2012) Identification and characterization of microRNAs in Asiatic cotton (Gossypium arboreum L.). Plos One 7:e33696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wen J-Z, Liao J-Y, Zheng L-L, Xu H, Yang J-H, Guan D-G et al (2014) A contig-based strategy for the genome-wide discovery of MicroRNAs without complete genome resources. Plos One 9(2):e88179

    Article  PubMed  PubMed Central  Google Scholar 

  • Wienken CJ, Baaske P, Duhr S, Braun D (2011) Thermophoretic melting curves quantifies the conformation and stability of RNA and DNA. Nucleic Acids Res 39(8):e52–e52. doi:10.1093/nar/gkr035, PMC 3082908, PMID 21297115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xia K, Ou X, Gao C, Tang H, Jia Y, Deng R, Xu X et al (2015) OsWS1 involved in cuticular wax biosynthesis is regulated by osa-miR1848. Plant Cell Environ 38:2662–2673

    Article  CAS  PubMed  Google Scholar 

  • Yephremov A, Wisman E, Huijser P, Huijser C, Wellesen K, Saedler H (1999) Characterization of the FIDDLEHEAD gene of Arabidopsis reveals a link between adhesion response and cell differentiation in the epidermis. Plant Cell 11:2187–2201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan S, Li Z, Li D, Yuan N, Hu Q, Luo H (2015) Constitutive expression of rice MicroRNA528 alters plant development and enhances tolerance to salinity stress and nitrogen starvation in creeping bentgrass. Plant Physiol 169(1):576–593

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang B, Pan X, Cox S, Cobb G, Anderson T (2006) Evidence that miRNAs are different from other RNAs. Cell Mol Life Sci 63:246–254

    Article  CAS  PubMed  Google Scholar 

  • Zhang S-D, Ling L-Z, Zhang Q-F, Xu J-D, Cheng L (2015) Evolutionary Comparison of Two Combinatorial Regulators of SBP-Box Genes, MiR156 and MiR529, in Plants. Plos One 10(4):e0124621. doi:10.1371/journal.pone.0124621

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao B, Liang R, Ge L, Li W, Xiao H, Lin H et al (2007) Identification of drought-induced microRNAs in rice. Biochem Biophys Res Commun 354:585–590

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the Indian Council of Agricultural Research, New Delhi for financial assistance through the ICAR Network Project on Transgenics in Crops: Functional Genomics-Fusarium wilt and drought tolerance in Banana. M/s Genotypic Pvt. Ltd. Bangalore for sequencing and bioinformatic assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kundapura V. Ravishankar.

Electronic Supplementary Materials

Below is the link to the electronic supplementary material.

ESM 1

(XLSX 44 kb)

ESM 2

(XLSX 96 kb)

ESM 3

(DOCX 1504 kb)

ESM 4

(PDF 28 kb)

ESM 5

(PDF 42 kb)

ESM 6

(PDF 20 kb)

ESM 7

(PDF 20 kb)

ESM 8

(PDF 15 kb)

ESM 9

(PDF 18 kb)

ESM 10

(DOCX 18 kb)

ESM 11

(DOCX 12 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sampangi-Ramaiah, M.H., Ravishankar, K.V., Rekha, A. et al. A Contig-Based Computational Prediction of Conserved miRNAs and Their Probable Role in Regulation of Cuticular Wax Biosynthesis in Banana. Plant Mol Biol Rep 35, 203–214 (2017). https://doi.org/10.1007/s11105-016-1016-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-016-1016-9

Keywords

Navigation