Skip to main content
Log in

Genetic Diversity and Structure of Pea (Pisum sativum L.) Germplasm Based on Morphological and SSR Markers

  • Original Paper
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

The pea (Pisum sativum L.) is one of the oldest domesticated, highly valued and extensively cultivated pulse crops throughout the world. We studied genetic structure, diversity and inter-relationships in a worldwide collection of 151 pea accessions using 21 morphological descriptors and 20 simple sequence repeat (SSR) primers. Among quantitative traits, seed yield per plant followed by seed weight and pod length have shown significant variation. SSR primers showed a high level of diversity and amplified a total of 179 alleles with an average of 8.95 alleles per primer in a size range of 95–510 bp. Primer AA-122 amplified the maximum (21) alleles while primer AB-64 amplified the minimum (4) alleles. Mean polymorphism information content (PIC) was 0.72. Observed heterozygosity (Ho) varied from 0.10 to 0.99 in primers AB-64 and AD-160, respectively, with a mean value of 0.46. Expected heterozygosity (He) ranged from 0.47 to 0.94 in primers C-20 and AA-122, with a mean of 0.75. Genetic relationships inferred from a neighbour-joining tree separated accessions into 3 groups. Bayesian model-based STRUCTURE analysis detected 3 gene pools for the analysed pea germplasm and showed a high admixture within individual accessions. Furthermore, STRUCTURE analysis showed that these 3 gene pools co-existed in accessions belonging to different geographic regions indicating frequent transference and exchange of pea germplasm during its domestication history. The results of the present study will be useful in understanding the pea’s genetic structure and in the selection of suitable diverse accessions for future improvement programmes in the pea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

DF:

Days to flowering

DM:

Days to maturity

EC:

Exotic collection

EPG:

Early plant growth

FBN:

First blossom node

FC:

Flower color

FH:

Flowering habit

IC:

Indigenous collection

LS:

Leaf size

NBPGR:

National Bureau of Plant Genetic Resources

PB:

Primary branches

PC:

Pod clusters

PGH:

Plant growth habit

PCA:

Principal component analysis

PH:

Plant height

PIC:

Polymorphism information content

PL:

Pod length

PP:

Pods per plant

PS:

Pod shape

PT:

Pod thickness

SC:

Seed color

SP:

Seeds per pod

SS:

Seed size

SSR:

Simple sequence repeat

SSU:

Seed surface

SY:

Seed yield

SW:

Seed weight

References

  • Ahmad G, Mudasir KR, Shikha SMK (2010) Evaluation of genetic diversity in pea (Pisum sativum L) using RAPD analysis. Genet Eng Biotechnol 16:1–5

    Google Scholar 

  • Ahmad S, Singh M, Lamb-Palmer ND, Lefsrud M, Singh J (2012) Assessment of genetic diversity in 35 Pisum sativum accessions using microsatellite markers. Can J Plant Sci 92:1075–1081

    Article  CAS  Google Scholar 

  • Ambrose MJ (1995) From Near East centre of origin the prized pea migrates throughout world. Diversity 11:118–119

    Google Scholar 

  • Baranger A, Aubert G, Arnau G, Lain AL, Deniot G, Potier J, Weinachter C, Lejeune-H-naut I, Lallemand J, Burstin J (2004) Genetic diversity within Pisum sativum using protein and PCR-based markers. Theor Appl Genet 108:1309–1321

    Article  CAS  PubMed  Google Scholar 

  • Botstein D, White KL, Skolnick M, Davis RW (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 32:314–331

    CAS  PubMed  PubMed Central  Google Scholar 

  • Burton GW (1952) Quantitative inheritance in grasses. Proc Int Grassl Cong 1:277–283

    Google Scholar 

  • Cieslarová J, Hýbl M, Griga M, Smýkal P (2012) Molecular analysis of temporal genetic structuring in pea (Pisum sativum L.) cultivars bred in the Czech Republic and in Former Czechoslovakia Since the Mid-20th Century. Czech J Genet Plant Breed 48:61–73

    Google Scholar 

  • Cousin R (1997) Peas (Pisum sativum L.). Field Crop Res 53:111–130

    Article  Google Scholar 

  • Cupic T, Tucak M, Popovic S, Bolaric S, Grljusic S, Kozumplik V (2009) Genetic diversity of pea (Pisum sativum L.) genotypes assessed by pedigree, morphological and molecular data. J Food Agric Environ 7(3,4):343–348

    CAS  Google Scholar 

  • Dewey DR, Lu KH (1959) A correlation and path coefficient analysis of components of crested wheat grass seed production. Agron J 51:515–518

    Article  Google Scholar 

  • Doyle JJ, Doyle JE (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15

    Google Scholar 

  • Earl DA, VonHoldt BM (2011) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361

    Article  Google Scholar 

  • Esquinas-Alcázar J (2005) Protecting crop genetic diversity for food security: political, ethical and technical challenges. Nat Rev Genet 6:946–953

    Article  PubMed  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Erskine W, Smartt J, Muehlbauer FJ (1994) Mimicry of lentil and the domestication of common vetch and grass pea. Econ Bot 48(3):326–332

    Article  Google Scholar 

  • FAOSTAT (2013) Food and Agricultural Organization of United Nations, http://faostat3.fao.org/browse/Q/QC/E

  • Falush D, Stephens M, Pritchard JK (2007) Inference of population structure using multilocus genotype data: dominant markers and null alleles. Mol Ecol Notes 7(4):574–578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Federer WT (1956) Augmented (or hoonuiaku) designs. Hawaii Plant Record 55:191–208

    Google Scholar 

  • Gaitan-Solıs E, Duque MC, Edwards KJ, Tohme J (2002) Microsatellite repeats in common bean (Phaseolus vulgaris): isolation, characterization, and cross-species amplification in Phaseolus spp. Crop Sci 42:2128–2136

    Article  Google Scholar 

  • Gixhari B, Pavelková M, Ismaili H, Vrapi H, Jaupi A, Smýkal P (2014) Genetic diversity of Albanian Pea (Pisum sativum L.) landraces assessed by morphological traits and molecular markers. Czech J Genet Plant Breed 50:177–184

    Google Scholar 

  • Hagenblad J, Zie J, Leino MW (2012) Exploring the population genetics of genebank and historical landrace varieties. Genet Resour Crop Evol 59(6):1185–1199

    Article  Google Scholar 

  • Hagenblad J, Bostrom E, Nygards L, Leino MW (2014) Genetic diversity in local cultivars of garden pea (Pisum sativum L.) conserved ‘on farm’ and in historical collections. Genet Resour Crop Evol 6:413–422

    Article  Google Scholar 

  • Jing R, Ambrose MA, Knox MR, Smykal P, Hybl M, Ramos A, Caminero C, Burstin J, Duc G, Van Soest LJM, Wiecicki WKS, Pereira MG, Vishnyakova M, Davenport GF, Flavell AJ, Ellis THN (2012) Genetic diversity in European Pisum germplasm collections. Theor Appl Genet 125:367–380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jing R, Johnson R, Seres A, Kiss G, Ambrose MJ, Knox MR, Ellis THN, Flavell AJ (2007) Gene-based sequence diversity analysis of field Pea (Pisum). Genetics. doi:10.1534/genetics.107,081323

    Google Scholar 

  • Jing R, Vershinin A, Grzebyta J, Shaw P, Smýkal P, Marshall D, Ambrose MJ, Ellis THN, Flavell AJ (2010) The genetic diversity and evolution of field pea (Pisum) studied by high throughput retrotransposon based insertion polymorphism (RBIP) marker analysis. BMC Evol Biol 10:44

    Article  PubMed  PubMed Central  Google Scholar 

  • Kalinowski ST, Taper ML, Marshell TC (2007) Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol Ecol 16:1099–1106

    Article  PubMed  Google Scholar 

  • Kaur S, Pembleton LW, Cogan NOI, Savin KW, Leonforte T, Paull J, Materne M, Forster JW (2012) Transcriptome sequencing of field pea and faba bean for discovery and validation of SSR genetic markers. BMC Genomics 13:104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuleung C, Baenziger PS, Kachman SD, Dweikat I (2006) Evaluating the genetic diversity of triticale with wheat and rye SSR markers. Crop Sci 46:1692–1700

    Article  CAS  Google Scholar 

  • Kumar K (2008) Variability, heritability and genetic advance in pea (Pisum sativum L.). Int J Plant Sci 3(1):211–212

    Google Scholar 

  • Kumari P, Basal N, Singh AK, Rai VP, Srivastava CP, Singh PK (2013) Genetic diversity studies in pea (Pisum sativum L.) using simple sequence repeat markers. Genet Mol Res 12:3540–3550

    Article  CAS  PubMed  Google Scholar 

  • Leino MW, Boström E, Hagenblad J (2013) Twentieth-century changes in the genetic composition of Swedish field pea metapopulations. Heredity 110:338–346

    Article  CAS  PubMed  Google Scholar 

  • Loridon K, McPhee K, Morin J, Dubreuil P, Pilet-Nayel ML, Aubert G, Rameau C, Baranger A, Coyne C, Lejeune-Hènaut I, Burstin J (2005) Microsatellite marker polymorphism and mapping in pea (Pisum sativum L.). Theor Appl Genet 111:1022–1031

    Article  CAS  PubMed  Google Scholar 

  • Mahajan RK, Sapra RL, Srivastava U, Singh M, Sharma GD (2000) Minimal descriptors (for characterization and evaluation) of agri-horticultural crops (Part I). National Bureau of Plant Genetic Resources, New Delhi, pp 1–230

    Google Scholar 

  • Martin-Sanz A, Caminero C, Jing R, Flavell AJ, Perez de la Vega M (2011) Genetic diversity among Spanish pea (Pisum sativum L.) landraces, pea cultivars and the World Pisum sp. core collection assessed by retrotransposon-based insertion polymorphisms (RBIPs). Spanish J Agric Res 9:166–178

    Article  Google Scholar 

  • Mehmet AA, Ceyham E (2006) Correlation and genetic analysis of pod characterisation in pea. Asian J Plant Sci 5(1):1–4

    Article  Google Scholar 

  • Mehrani P (2002) Genetic diversity in local and exotic pea (Pisum sativum L.) germplasm for morphological traits and SDS-PAGE markers. M. Phil Dissertation, Quaid-e-Azam University, Islamabad

  • Messina MJ (1999) Legumes and soybeans: overview of their nutritional profiles and health effects. Am J Clin Nutr 70(3 Suppl):439S–450S

    CAS  PubMed  Google Scholar 

  • Mudasir S, Sofi PA, Khan MNM, Sofi NR, Dar ZA (2012) Research article genetic diversity, variability and character association in local common Bean (Phaseolus vulgaris L.) germplasm of Kashmir. Electron J Plant Breed 3(3):883–891

    Google Scholar 

  • Nasiri J, Haghnazari A, Saba J (2009) Genetic diversity among varieties and wild species accessions of pea (Pisum sativum L.) based on SSR markers. Afr J Biotechnol 8:3405–3417

    CAS  Google Scholar 

  • Pachauri V, Taneja N, Vikram P, Singh NK, Singh S (2013) Molecular and morphological characterization of Indian farmers rice varieties (Oryza sativa L.). Aust J Crop Sci 7:923–932

    CAS  Google Scholar 

  • Pavelkova A, Moravec J, Hájek D, Bareš I, Sehnalová J (1986) Descriptor list of the genus Pisum L. RICP Prague – Ruzynì, Genové zdroje 32:46

    Google Scholar 

  • Perrier X, Jacquemoud-Collet JP (2006) DARwin software http://darwin.cirad.fr/darwin

  • Ponnaiah M, Shiferaw E, Pè ME, Porceddu E (2011) Development and application of EST-SSRs for diversity analysis in Ethiopian grass pea. Plant Genet Resour: Charact Util 9:276–280

    Article  CAS  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rana JC, Gupta VP (1993a) Genetic analysis of some physiological traits in pea. Indian J Pulse Res 6(1):38–44

    Google Scholar 

  • Rana JC, Gupta VP (1993b) Response to selection in early generation in pea. Indian J Genet 53(3):269–272

    Google Scholar 

  • Rana JC, Singh A, Sharma Y, Pradheep K, Mendiratta N (2010) Dynamics of plant bioresources in western Himalayan region of India—watershed based case experiment. Curr Sci 98(2):192–203

    Google Scholar 

  • Rana JC, Chahota RK, Sharma V, Rana M, Verma N, Verma B, Sharma TR (2015) Genetic diversity and structure of Pyrus accessions of Indian Himalayan region based on morphological and SSR markers. Tree Genet Genomes 11(1):821–834

    Article  Google Scholar 

  • Rathore A, Parsad R, Gupta VK (2004) Computer aided construction and analysis of augmented designs. J Indian Soc Agric Stat 57:320–344

    Google Scholar 

  • Saha MC, Mian MAR, Eujayl I, Zwonitzer JC, Wang L, May GD (2004) Tall fescue EST-SSR markers with transferability across several grass species. Theor Appl Genet 109:783–791

    Article  PubMed  Google Scholar 

  • Santalla M, Amurrio JM, De Ron AM (2001) Food and feed potential breeding value of green, dry and vegetable pea germplasm. Can J Plant Sci 81:601–610

    Article  Google Scholar 

  • Sarıkamış G, Yanmaz R, Ermiş S, Bakır M, Yüksel C (2010) Genetic characterization of pea (Pisum sativum) germplasm from Turkey using morphological and SSR markers. Genet Mol Res 9:591–600

    Article  PubMed  Google Scholar 

  • Sharma L, Prasanna BM, Ramesh B (2010) Analysis of phenotypic and microsatellite-based diversity of maize landraces in India, especially from the North East Himalayan region. Genetica 138:619–631

    Article  CAS  PubMed  Google Scholar 

  • Sharma RK, Gupta P, Sharma V, Sood A, Mohapatra T, Ahuja PS (2008) Evaluation of rice and sugarcane SSR markers for phylogenetic and genetic diversity analyses in bamboo. Genome 51:91–103

    Article  CAS  PubMed  Google Scholar 

  • Sharma V, Bhardwaj P, Kumar R, Sharma RK, Sood A, Ahuja PS (2009) Identification and cross-species amplification of EST derived SSR markers in different bamboo species. Conserv Genet (2009) 10:721–724

    Article  CAS  Google Scholar 

  • Singh A, Singh S, Babu JDB (2011) Heritability, character association and path analysis in early segregating populations of field pea. Int J Plant Breed Genet 5(1):86–92

    Article  Google Scholar 

  • Sivasubramanian S, Madhavamenon P (1978) Genotypic and phenotypic variability in rice. Madras Agric J 60:1093–1096

    Google Scholar 

  • Smartt J (1990) Grain legumes: evolution and genetic resources. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Smykal P, Horacek J, Dostalova R, Hybl M (2008) Variety discrimination in pea (Pisum sativum L.) by molecular, biochemical and morphological markers. J Appl Genet 49:155–166

    Article  PubMed  Google Scholar 

  • Smýkal P, Aubert G, Burstin J, Coyne CJ, Ellis NTH, Flavell AJ, Ford R, Hýbl M, Macas J, Neumann P, McPhee KE, Redden RJ, Rubiales D, Weller JL, Warkentin TD (2012) Pea (Pisum sativum L.) in the genomic era. Agronomy 2:74–115

    Article  Google Scholar 

  • Yadav VK, Sandeep-Kumar S, Panwar RK (2007) Measurement of genetic dissimilarity in field pea (Pisum sativum L.) genotypes using RAPD markers. Genet Resour Crop Evol 54:1285–1289

    Article  CAS  Google Scholar 

  • Yeh FC, Boyle TJB (1997) Population genetic analysis of co-dominant and dominant markers and quantitative traits. Belg J Bot 129:157

    Google Scholar 

  • Zahir A, Afsari SQ, Waqal A, Haseena G, Abdul MN (2007) Evaluation of genetic diversity present in Pea (Pisum sativum L.) germplasm based on morphological traits, resistance to powdery mildew and molecular characteristics. Pak J Bot 39(7):2739–2747

    Google Scholar 

  • Zhu H, Choi HK, Cook DR, Shoemaker RC (2005) Bridging model and crop legumes through comparative genomics. Plant Physiol 137(4):1189–1196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zohary D, Hopf M (2000) Domestication of plants in the old world. Oxford University Press, Oxford

    Google Scholar 

Download references

Acknowledgment

The authors thank Dr Rajeev Rathour, Department of Agricultural Biotechnology, Agricultural University, Palampur, India for providing the pea SSR primers.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jai C Rana or Tilak R Sharma.

Ethics declarations

Conflict of Interest

Authors declared that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rana, J.C., Rana, M., Sharma, V. et al. Genetic Diversity and Structure of Pea (Pisum sativum L.) Germplasm Based on Morphological and SSR Markers. Plant Mol Biol Rep 35, 118–129 (2017). https://doi.org/10.1007/s11105-016-1006-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-016-1006-y

Keywords

Navigation