Skip to main content
Log in

CYCLOIDEA 2 Clade Genes: Key Players in the Control of Floral Symmetry, Inflorescence Architecture, and Reproductive Organ Development

  • Review
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

Undoubted lines of evidence point out that members of CYCLOIDEA (CYC) 2 clade are essential players to control flower symmetry and, amusingly, also are determinants of capitula architecture (pseudanthium). In several species, CYC-like genes influence the androecium patterning, but to date, the function of these genes in the development of gynoecium organs is less clear. In this review, we first reported details about floral symmetry and an overview of genes and molecular mechanisms regulating the development of zygomorphism in different angiosperm lineages (e.g., basal and core eudicots and monocots). Then, we paid emphasis on the role of CYC-like genes in the development of heterogamous inflorescence of sunflower as well as other Asteraceae and some species within the Dipsacaceae family. Helianthus annuus is particularly attractive because it represents a useful model to study the role of CYC-like genes on shaping floral corolla as well as the differentiation of reproductive organs in different flowers of pseudanthia. A special attention was reserved to inflorescence morphology mutants of sunflower (i.e., Chrysanthemoids2 and tubular ray flower) because they provide useful information on the role of CYC-like genes in the radiate capitulum evolution. Finally, we discuss data from literature to suggest that CYC-like genes are also co-opted to regulate stamen and carpel differentiation likely throughout their interaction with the cell cycle and flower organ identity genes. The recruitment of reproductive organs in ray flowers also supports the phylogenetic origin of a radiate inflorescence of sunflower from a discoid capitulum and suggests that in sterile zygomorphic ray flower primordia the latent identity to differentiate both microsporangium and macrosporangium was conserved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abbott RJ, Ashton PA, Forbes DG (1992) Introgressive origin of the radiate groundsel, Senecio vulgaris L. var. hibernicus Syme: Aat-3 evidence. Heredity 68:425–435

    Article  Google Scholar 

  • Abbott RJ, James JK, Milne RI, Gillies ACM (2003) Plant introduction, hybridization and gene flow. Philos Trans R Soc B Biol Sci 358:1123–1132

    Article  CAS  Google Scholar 

  • Aggarwal P, Gupta MD, Joseph AP, Chatterjee N, Srinivasan N, Nath U (2010) Identification of specific DNA binding residues in the TCP family of transcription factors in Arabidopsis. Plant Cell 22:1174–1189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aguilar-Martínez JA, Poza-Carrión C, Cubas P (2007) Arabidopsis BRANCHED1 acts as an integrator of branching signals within axillary buds. Plant Cell 19:458–472

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Almeida J, Galego L (2005) Flower symmetry and shape in Antirrhinum. Int J Dev Biol 49:527–537

    Article  PubMed  Google Scholar 

  • Almeida J, Rocheta M, Galego L (1997) Genetic control of flower shape in Antirrhinum majus. Development 124:1387–1392

    CAS  PubMed  Google Scholar 

  • Barreda VD, Palazzesi L, Tellería MC, Katinas L, Crisci JV, Bremer K, Passalia MG, Corsolini R, Rodríguez Brizuela R, Bechi F (2010) Eocene Patagonia fossils of the daisy family. Science 329:1621

    Article  CAS  PubMed  Google Scholar 

  • Bartlett ME, Specht CD (2011) Changes in expression pattern of the TEOSINTE BRANCHED1-like genes in the Zingiberales provide a mechanism for evolutionary shifts in symmetry across the order. Am J Bot 98:1–17

    Article  CAS  Google Scholar 

  • Bartlett ME, Williams S, Taylor Z, Deblasio S, Goldshmidt A, Hall DH, Schmidt RJ, Jackson DP, Whipple CJ (2015) The maize PI/GLO ortholog Zmm16/sterile tassel silky ear1 interact with the zygomorphic and sex determination pathways in flower development. Plant Cell 27:3081–3098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berger BA, Thompson V, Lim A, Ricigliano V, Howarth DG (2016) Elaboration of bilateral symmetry across Knautia macedonica capitula related to changes in ventral petal expression of CYCLOIDEA-like genes. EvoDevo 7:8

    Article  PubMed  PubMed Central  Google Scholar 

  • Berti F, Fambrini M, Turi M, Bertini D, Pugliesi C (2005) Mutations of corolla symmetry affect carpel and stamen development in Helianthus annuus. Can J Bot 83:1065–1072

    Article  Google Scholar 

  • Broholm SK, Tähtiharju S, Laitinen RAE, Albert VA, Teeri TH, Elomaa P (2008) A TCP domain transcription factor controls flower type specification along the radial axis of the Gerbera (Asteraceae) inflorescence. Proc Natl Acad Sci U S A 105:9117–9122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Broholm SK, Teeri TH, Elomaa P (2014) Molecular control of inflorescence development in Asteraceae. Adv Bot Res 72:297–333

    Article  CAS  Google Scholar 

  • Busch A, Zachgo S (2007) Control of corolla monosymmetry in the Brassicaceae Iberis amara. Proc Natl Acad Sci U S A 104:16714–16719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Busch A, Zachgo S (2009) Flower symmetry evolution: towards understanding the abominable mystery of angiosperm radiation. BioEssays 31:1181–1190

    Article  CAS  PubMed  Google Scholar 

  • Buzgo M, Endress PK (2000) Floral structure and development of Acoraceae and its systematic relationships with basal angiosperms. Int J Plant Sci 161:23–41

    Article  CAS  PubMed  Google Scholar 

  • Carlson SE, Howard DG, Donoghue MJ (2011) Diversification of CYCLOIDEA-like genes in Dipsacaceae (Dipsacales): implications for the evolution of capitulum inflorescences. BMC Evol Biol 11:325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carpenter R, Coen ES (1990) Floral homeotic mutations produced by transposon-mutagenesis in Antirrhinum majus. Genes Dev 4:1483–1493

    Article  CAS  PubMed  Google Scholar 

  • Chapman MA, Leebens-Mack JH, Burke JM (2008) Positive selection and expression divergence following gene duplication in the sunflower CYCLOIDEA gene family. Mol Biol Evol 25:1260–1273

    Article  CAS  PubMed  Google Scholar 

  • Chapman MA, Tang S, Draeger D, Nambeesan S, Shaffer H, Barb JG, Knapp SJ, Burke JM (2012) Genetic analysis of floral symmetry in Van Gogh’s sunflowers reveals independent recruitment of CYCLOIDEA genes in the Asteraceae. PLoS Genet 8(3):e1002628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Citerne HL, Möller M, Cronk QCB (2000) Diversity of cycloidea-like genes in Gesneriaceae in relation to floral symmetry. Ann Bot 86:167–176

    Article  CAS  Google Scholar 

  • Citerne HL, Luo D, Pennington RT, Coen E, Cronk QCB (2003) A phylogenomic investigation of CYCLOIDEA-like TCP genes in the Leguminosae. Plant Physiol 131:1042–1053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Citerne H, Jabbour F, Nadot S, Damerval C (2010) The evolution of floral symmetry. Adv Bot Res 54:85–137

    Article  CAS  Google Scholar 

  • Citerne HL, Le Guilloux M, Sannier J, Nadot S, Damerval C (2013) Combining phylogenetic and syntenic analyses for understanding the evolution of TCP ECE genes in Eudicots. PLoS ONE 8:e74803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clark JI, Coen ES (2002) The cycloidea gene can respond to a common dorsoventral prepattern in Antirrhinum. Plant J 30:639–648

    Article  CAS  PubMed  Google Scholar 

  • Claßen-Bockhoff R (1990) Pattern analysis in pseudanthia. Plant Syst Evol 171:57–88

    Article  Google Scholar 

  • Claßen-Bockhoff R, Ruonal R, Bull-Hereñu K, Marchant N, Albert VA (2013) The unique pseudanthium of Actinodium (Myrtaceae)—morphological reinvestigation and possible regulation by CYCLOIDEA-like genes. EvoDevo 4(1):8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Coen ES (1996) Floral symmetry. EMBO J 15:6777–6788

    CAS  PubMed  PubMed Central  Google Scholar 

  • Coen ES, Nugent JM (1994) Evolution of flower and inflorescences. Development Suppl:S107–S116

  • Coen ES, Nugent JM, Luo D, Bradley D, Cubas P, Chadwick M, Copsey L, Carpenter R (1995) Evolution of floral symmetry. Philos Trans R Soc B Biol Sci 350:35–38

    Article  Google Scholar 

  • Comai L (2005) The advantages and disadvantages of being polyploid. Nat Rev Genet 6:836-846

  • Corley SB, Carpenter R, Copsey L, Coen E (2005) Floral asymmetry involves an interplay between TCP and MYB transcription factors in Antirrhinum. Proc Natl Acad Sci U S A 102:5068–5073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Costa MMR, Fox S, Hana AI, Baxter C, Coen E (2005) Evolution of regulatory interactions controlling floral asymmetry. Development 132:5093–5101

    Article  CAS  PubMed  Google Scholar 

  • Crews ST, Pearson JC (2009) Transcriptional autoregulation in development. Curr Biol 19:R241–R246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cronk Q, Möller M (1997) Genetics of floral symmetry revealed. Trends Ecol Evol 12:85–86

    Article  CAS  PubMed  Google Scholar 

  • Cubas P (2004) Floral zygomorphy, the recurring evolution of a successful trait. BioEssays 26:1175–1174

    Article  CAS  PubMed  Google Scholar 

  • Cubas P, Lauter N, Doebley J, Coen E (1999a) The TCP domain: a motif found in proteins regulating plant growth and development. Plant J 18:215–222

    Article  CAS  PubMed  Google Scholar 

  • Cubas P, Vincent C, Coen E (1999b) An epigenetic mutation responsible for natural variation in floral symmetry. Nature 401:157–161

    Article  CAS  PubMed  Google Scholar 

  • Cubas P, Coen E, Zapater JMM (2001) Ancient asymmetries in the evolution of flowers. Curr Biol 11:1050–1052

    Article  CAS  PubMed  Google Scholar 

  • Damerval C, Nadot S (2007) Evolution of perianth and stamen characteristics with respect to floral symmetry in Ranunculales. Ann Bot 100:631–640

    Article  PubMed  PubMed Central  Google Scholar 

  • Damerval C, Le Guilloux M, Jager M, Charon C (2007) Diversity and evolution of CYCLOIDEA-like TCP genes in relation to flower development in Papaveraceae. Plant Physiol 143:759–772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Paolo S, Gaudio L, Aceto S (2015) Analysis of the TCP genes expressed in the inflorescence of the orchid Orchis italica. Sci Rep 5:16265

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Della Pina S, Souer E, Koes R (2014) Arguments in the evo-devo debate: say it with flowers! J Exp Bot 65:2231–2242

    Article  CAS  PubMed  Google Scholar 

  • Dezar CA, Tioni MF, Gonzalez DH, Chan RL (2003) Identification of three MADS-box genes expressed in sunflower capitulum. J Exp Bot 387:1637–1639

    Article  CAS  Google Scholar 

  • Dinneny JR, Yadegari R, Fischer RL, Yanofsky MF, Weigel D (2004) The role of JAGGED in shaping lateral organs. Development 131:1101–1110

    Article  CAS  PubMed  Google Scholar 

  • Doebley J, Stec A, Hubbard L (1997) The evolution of apical dominance. Nature 386:485–488

    Article  CAS  PubMed  Google Scholar 

  • Donoghue MJ, Ree RH, Baum DA (1998) Phylogeny and the evolution of flower symmetry in the Asteridae. Trends Plant Sci 3:311–317

    Article  Google Scholar 

  • Dornelas MC, Patreze CM, Angenent GC, Immink RGH (2010) MADS: the missing link between identity and growth? Trends Plant Sci 16:89–97

    Article  PubMed  CAS  Google Scholar 

  • Du ZY, Wang YZ (2008) Significance of RT-PCR expression patterns of CYC-like genes in Oreocharis benthamii (Gesneriaceae). J Syst Evol 46:23–31

    Google Scholar 

  • Endress PK (1999) Symmetry in flowers: diversity and evolution. Int J Plant Sci 160:S3–S23

    Article  CAS  PubMed  Google Scholar 

  • Endress PK (2001) Evolution of floral symmetry. Curr Opin Plant Biol 4:86–91

    Article  CAS  PubMed  Google Scholar 

  • Fambrini M, Bertini D, Pugliesi C (2003) The genetic basis of a mutation that alters the floral symmetry in sunflower. Ann Appl Biol 143:341–347

    Article  Google Scholar 

  • Fambrini M, Michelotti V, Pugliesi C (2007) The unstable tubular ray flower allele of sunflower: inheritance of reversion to wild type. Plant Breed 126:548–550

    Article  Google Scholar 

  • Fambrini M, Salvini M, Pugliesi C (2011) A transposon-mediate inactivation of a CYCLOIDEA-like gene originates polysymmetric and androgynous ray flowers in Helianthus annuus. Genetica 139:1521–1529

    Article  CAS  PubMed  Google Scholar 

  • Fambrini M, Salvini M, Basile A, Pugliesi C (2014a) Transposon-dependent induction of Vincent van Gogh’s sunflowers: exceptions revealed. Genesis 52:315–327

    Article  CAS  PubMed  Google Scholar 

  • Fambrini M, Basile A, Salvini M, Pugliesi C (2014b) Excisions of a defective transposable CACTA element (Tetu1) generate new alleles of a CYCLOIDEA-like gene of Helianthus annuus. Gene 549:198–207

    Article  CAS  PubMed  Google Scholar 

  • Feng X, Zhao Z, Tian Z, Xu S, Luo Y, Cai Z, Wang Y, Yang J, Wang Z, Weng L, Chen J, Zheng L, Guo X, Luo J, Sato S, Tabata S, Ma W, Cao X, Hu X, Sun C, Luo D (2006) Control of petal shape and floral zygomorphy in Lotus japonicus. Proc Natl Acad Sci U S A 103:4970–4975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ford VS, Gottlieb LD (1990) Genetic studies of floral evolution in Laya. Heredity 64:29–44

    Article  Google Scholar 

  • Friedman WE (2009) The meaning of Darwin’s “abominable mystery”. Am J Bot 96:5–21

    Article  PubMed  Google Scholar 

  • Fukuda T, Yokoyama J, Maki M (2003) Molecular evolution of Cycloidea-like genes in Fabaceae. J Mol Evol 57:588–597

    Article  CAS  PubMed  Google Scholar 

  • Galego L, Almeida J (2002) Role of DIVARICATA in the control of dorsoventral asymmetry in Antirrhinum flowers. Genes Dev 16:880–891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao Q, Tao JH, Yan D, Wang YZ, Li ZY (2008) Expression differentiation of CYC-like floral symmetry genes correlated with their protein sequence divergence in Chirita heterotricha (Gesneriaceae). Dev Genes Evol 218:341–351

    Article  CAS  PubMed  Google Scholar 

  • Garcês HMP, Spencer VMR, Kim M (2016) Control of floret symmetry by RAY3, SvDIV1B and SvRAD in the capitulum of Senecio vulgaris. Plant Physiol 171:2055–2068

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gaudin V, Lunness PA, Fobert PR, Towers M, Riou-Khamlichi C, Murray JA, Coen E, Doonan JH (2000) The expression of D-Cyclin defines distinct developmental zones in snapdragon apical meristems and is locally regulated by the Cycloidea gene. Plant Physiol 122:1137–1148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gübitz T, Caldwell A, Hudson A (2003) Rapid molecular evolution of CYCLOIDEA-like genes in Antirrhinum and its relatives. Mol Biol Evol 20:537–1544

    Article  CAS  Google Scholar 

  • Harris EM (1995) Inflorescence and floral ontogeny in Asteraceae: a synthesis of historical and current concepts. Bot Rev 61:93–278

    Article  Google Scholar 

  • Heijmans K, Morel P, Vandenbussche M (2012) MADS-box genes and flower development: the dark side. J Exp Bot 63:5397–5404

    Article  CAS  PubMed  Google Scholar 

  • Hileman LC (2014a) Bilateral flower symmetry—how, when and why? Curr Opin Plant Biol 17:146–152

    Article  PubMed  Google Scholar 

  • Hileman LC (2014b) Trends in flower symmetry evolution revealed through phylogenetic and developmental genetic advances. Phylos Trans R Soc Lond B Biol Sci 369:1648

    Google Scholar 

  • Hileman LC, Cubas P (2009) An expanded evolutionary role for flower symmetry genes. J Biol 8:90

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hileman LC, Kramer EM, Baum DA (2003) Differential regulation of symmetry genes and the evolution of floral morphologies. Proc Natl Acad Sci U S A 100:12814–12819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horn S, Pabón-Mora N, Theuß VA, Bush A, Zachgo S (2015) Analysis of the CYC/TB1 class of TCP transcription factors in basal angiosperm and magnoliids. Plant J 81:559–571

    Article  CAS  PubMed  Google Scholar 

  • Hoshino Y, Igarashi T, Ohhima M, Shinoda K, Murata N, Kanno A, Nakano M (2014) Characterization of CYCLOIDEA-like genes in controlling floral zygomorphy in the monocotyledon Alstroemeria. Sci Hort 169:6–13

    Article  CAS  Google Scholar 

  • Howarth DG, Donoghue MJ (2005) Duplications in CYC-like genes from Dipsacales correlate with floral form. Int J Plant Sci 166:357–370

    Article  CAS  Google Scholar 

  • Howarth DG, Donoghue MJ (2006) Phylogenetic analysis of the “ECE” (CYC/TB1) clade reveals duplications predating the core eudicots. Proc Natl Acad Sci U S A 103:9101–9106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Howarth DG, Martins T, Chimney E, Donoghue MJ (2011) Diversification of CYCLOIDEA expression in the evolution of bilateral flower symmetry in Caprifoliaceae and Lonicera (Dipsacales). Ann Bot 107:1521–1532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ingram R, Taylor L (1982) The genetic control of a non-radiate condition in Senecio squalidus L. and some observations of the role of ray florets in the compositae. New Phytol 91:749–756

    Article  Google Scholar 

  • Irish VF, Litt A (2005) Flower development and evolution: gene duplication, diversification and redeployment. Curr Opin Genet Dev 15:454–460

    Article  CAS  PubMed  Google Scholar 

  • Jabbour F, Cossard G, Le Guilloux M, Sannir J, Nadot S, Damerval C (2014) Specific duplication and dorsoventrallly asymmetric expression patterns of Cycloidea-like genes in zygomorphic of Ranunculaceae. PLoS One 9(4):e95727

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jaranowski JK, Luczkiewicz L, Muszynski A (1977) Inflorescence organogenesis in Helianthus annuus florepleno. Phytomorphology 27:8–12

    Google Scholar 

  • Jeffrey C (1977) Corolla forms in compositae—some evolutionary and taxonomic speculations. In: Heywood VH, Harborne JB, Turner BL (eds) The biology and chemistry of the compositae, vol 1. Academic, London, pp 111–118

    Google Scholar 

  • Juntheikki-Palovaara I, Tähtiharjiu Lan T, Broholm K, Rijpkena AS, Ruonala R, Kale L, Albert VA, Teeri TH, Elomaa P (2014) Functional diversification of duplicated CYC2 clade genes in regulation of inflorescence development in Gerbera hybrida (Asteraceae). Plant J 79:783–796

    Article  CAS  PubMed  Google Scholar 

  • Kalisz S, Ree RH, Sargent RD (2006) Linking floral symmetry genes to breeding system evolution. Trends Plant Sci 11:1360–1385

    Article  CAS  Google Scholar 

  • Kaufmann K, Muiño JM, Jauregui R, Airoldi CA, Smaczniak C, Krajewski P, Angenent GC (2009) Target genes of the MADS transcription factor SEPALLATA3: integration of developmental and hormonal pathways in the Arabidopsis flower. PLoS Biol 7:e1000090

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kim M, Cui M-L, Cubas P, Gillies A, Lee K, Chapman MA, Abbott RJ, Coen E (2008) Regulatory genes control key morphological and ecological trait transferred between species. Science 322:1116–1119

    Article  CAS  PubMed  Google Scholar 

  • Knowles PF (1978) Morphology and anatomy. In: Carter JF (ed) Sunflower science and technology. ASA, CSSA, SSSA Inc., Madison, pp 55–87

    Google Scholar 

  • Kosugi S, Ohashi Y (2002) DNA binding and dimerization specificity and potential targets for the TCP protein family. Plant J 30:337–348

    Article  CAS  PubMed  Google Scholar 

  • Kotilainen M, Helariutta Y, Mehto M, Pöllänen E, Albert VA, Elomaa P, Teeri TH (1999) GEG participates in the regulation of cell and organ shape during corolla and carpel development in Gerbera hybrida. Plant Cell 11:1093–1104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kotilainen M, Elomaa P, Uimari A, Albert V, Yu D, Teeri TH (2000) GRCD1, an AGL2-like MADS box gene, participates in the C function during stamen development in Gerbera hybrida. Plant Cell 12:1893–1902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krizek EM, Fletcher JC (2005) Molecular mechanisms of flower development: an armchair guide. Nat Rev Genet 6:688–698

    Article  CAS  PubMed  Google Scholar 

  • Laitinen RAE, Broholm SK, Albert VA, Teeri TH, Elomaa P (2006) Patterns of MADS-box gene expression mark flower-type development in Gerbera hybrida (Asteraceae). BMC Plant Biol 6:11

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lewin B (1997) Transposons. In: Lewin B (ed) Genes VI. Oxford University Press, New York, pp 563–595

    Google Scholar 

  • Luo D, Carpenter R, Vincent C, Copsey L, Coen E (1996) Origin of floral asymmetry in Antirrhinum. Nature 383:794–799

    Article  CAS  PubMed  Google Scholar 

  • Luo D, Carpenter R, Copsey L, Vincent C, Clark J, Coen ES (1999) Control of organ asymmetry in flowers of Antirrhinum. Cell 99:367–376

    Article  CAS  PubMed  Google Scholar 

  • Martín-Trillo M, Cubas P (2010) TCP genes: a family snapshot ten years later. Trends Plant Sci 15:31–39

    Article  PubMed  CAS  Google Scholar 

  • Mizzotti C, Fambrini M, Caporali E, Masiero S, Pugliesi C (2015) A CYCLOIDEA-like gene mutation in sunflower determines an unusual floret type able to produce filled achenes at the periphery of the pseudanthium. Botany 93:171–181

    Article  CAS  Google Scholar 

  • Nath U, Crawford B, Carpenter B, Coen E (2003) Genetic control of surface curvature. Science 299:1404–1407

    Article  CAS  PubMed  Google Scholar 

  • Neal PR, Dafni A, Giurfa M (1998) Floral symmetry and its role in plant-pollinator systems: terminology, distribution, and hypotheses. Annu Rev Ecol Syst 29:345–373

    Article  Google Scholar 

  • Nikkeshi A, Kurimoto D, Ushimaru A (2015) Low flower-size variation in bilaterally symmetrycal flowers: support for the pollination precision hypothesis. Am J Bot 102:2032–2040

    Article  PubMed  Google Scholar 

  • Oliver KR, Mccomb JA, Greene WK (2013) Transposable elements: powerful contributors to angiosperm evolution and diversity. Genome Biol Evol 5:1886–1901

    Article  PubMed  PubMed Central  Google Scholar 

  • Palmer JM, Palmer JH (1982) Changes in mitotic activity and cell size in the apical meristem of Helianthus annuus L. during the transition to flowering. Am J Bot 69:768–775

    Article  Google Scholar 

  • Panero JL, Funk VA (2002) Toward a phylogenetic subfamilies classification for the Compositae (Asteraceae). Proc Biol Soc Washington 115:909–922

    Google Scholar 

  • Preston JC, Hileman LC (2009) Developmental genetics of floral symmetry evolution. Trends Plant Sci 14:147–154

    Article  CAS  PubMed  Google Scholar 

  • Preston JC, Hileman LC (2012) Parallel evolution of TCP and B-class genes in Commelinaceae flower bilateral symmetry. EvoDevo 3:6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raimundo J, Sobral R, Bailey P, Azevedo H, Galego L, Almeida J, Coen E, Costa MMR (2013) A subcellular tug of war involving three MYB-like proteins underlies a molecular antagonism in Antirrhinum flower asymmetry. Plant J 75:527–538

    Article  CAS  PubMed  Google Scholar 

  • Reale L, Porceddu A, Lanfaloni L, Moretti C, Zenoni S, Pezzotti M, Romano B, Ferranti F (2002) Patterns of cell division and expansion in developing petals of Petunia hybrida. Sex Plant Reprod 15:123–132

    Article  Google Scholar 

  • Ree RH, Citerne HL, Lavin M, Cronk QCB (2004) Heterogeneous selection on LEGCYC paralogs in relation to flower morphology and the phylogeny of Lupinus (Leguminosae). Mol Biol Evol 21:321–331

    Article  CAS  PubMed  Google Scholar 

  • Reeves P, Olmstead R (2003) Evolution of the TCP gene family in Asteridae: cladistic and network approaches to understanding regulatory gene family diversification and its impact on morphological evolution. Mol Biol Evol 20:1997–2009

    Article  CAS  PubMed  Google Scholar 

  • Ronse De Craene LP (2010) Floral diagrams: an aid to understanding flower morphology and evolution. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Rudall PJ, Bateman RM (2004) Evolution of zygomorphy in monocot flowers: iterative patterns and developmental constraints. New Phytol 162:25–44

    Article  Google Scholar 

  • Ruokolainen S, Ng YP, Albert VA, Elomaa P, Teeri TH (2011) Over-expression of the Gerbera hybrida At-SOC1-like1 gene Gh-SOC1 leads to floral organ identity deterioration. Ann Bot 107:1491–1499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sargent RD (2004) Floral symmetry affects speciation rates in angiosperms. Proc Royal Soc London Series B Biol Sci 271:603–608

    Article  Google Scholar 

  • Shulga OA, Shchennikova AV, Angenent GC, Skryabin KG (2008) MADS-box genes controlling inflorescence morphogenesis in sunflower. Russ J Dev Biol 39:2–5

    Article  CAS  Google Scholar 

  • Shulga OA, Neskorodov YB, Shchennikova AV, Gaponenko AK, Skryabin KG (2015) Ectopic expression of the HAM59 gene causes homeotic transformations of reproductive organs in sunflower (Helianthus annuus L.). Dokl Biochem Biophys 461:110–113

    Article  CAS  PubMed  Google Scholar 

  • Smith JF, Hileman LC, Powell MP, Baum DA (2004) Evolution of GCYC, a Gesneriaceae homolog of CYCLOIDEA, within Gesnerioideae (Gesneriaceae). Mol Phylogenet Evol 31:765–779

    Article  CAS  PubMed  Google Scholar 

  • Song CF, Lin QB, Liang RH, Wang YZ (2009) Expressions of ECE-CYC2 clade genes relating to abortion of both dorsal and ventral stamens in Opithandra (Gesneriaceae). BMC Evol Biol 9:244

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Specht CD, Howarth DG (2015) Adaptation in flower form: a comparative evodevo approach. New Phytol 206:74–90

    Article  PubMed  Google Scholar 

  • Stuessy TF, Spooner DM, Evans KA (1986) Adaptive significance of ray corollas in Helianthus grosseserratus (Compositae). Am Midl Naturalist 115:191–197

    Article  Google Scholar 

  • Tähtiharju S, Rijpkema AS, Vetterli A, Albert VA, Teeri TH, Elomaa P (2012) Evolution and diversification of the CYC/TB1 gene family in Asteraceae—a comparative study in gerbera (Mutisieae) and sunflower (Heliantheae). Mol Biol Evol 29:1155–1166

    Article  PubMed  CAS  Google Scholar 

  • Theissen G (2000) Evolutionary developmental genetics of floral symmetry: the revealing power of Linnaeus’ monstrous flower. BioEssays 22:209–213

    Article  CAS  PubMed  Google Scholar 

  • Tucker SC (1999) Evolutionary lability of symmetry in early floral development. Int J Plant Sci 160:S25–S39

    Article  CAS  PubMed  Google Scholar 

  • Uberti Manassero NG, Viola IL, Welchen E, Gonzalez DH (2013) TCP transcription factors: architectures of plant form. Biomol Concepts 4:111–127

    Google Scholar 

  • Uimari A, Kotilainen M, Elomaa P, Yu D, Albert VA, Teeri TH (2004) Integration of reproductive meristem fates by a SEPALLATA-like MADS-box gene. Proc Natl Acad Sci U S A 101:15817–15822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van De Peer Y, Maere S, Meyer A (2009) The evolutionary significance of ancient genome duplications. Nature Rev Genet 10:724–732

    Article  CAS  Google Scholar 

  • Viola IL, Reinheimer R, Ripoli R, Uberti Manassero NG, Gonzalez DH (2012) Determinants of the DNA binding specificity of class I and class II TCP transcription factors. J Biol Chem 287:347–356

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Luo Y, Li X, Xu SL, Yang J, Weng L, Sato S, Tabata S, Ambrose M, Rameau C, Feng XZ, Hu XH, Luo D (2008) Genetic control of floral zygomorphy in pea (Pisum sativum L.). Proc Natl Acad Sci U S A 105:10414–10419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weil CF, Kunze R (2000) Transposition of maize Ac/Ds transposable elements in the yeast Saccharomyces cerevisiae. Nat Genet 26:187–190

    Article  CAS  PubMed  Google Scholar 

  • Wellmer F, Alves-Ferreira M, Dubois A, Riechmann JL, Meyerowitz EM (2006) Genome-wide analysis of gene expression during early Arabidopsis flower development. PLoS Genet 2:e117

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Weng L, Tian Z, Feng X, Li X, Xu S, Hu X, Luo D, Yang J (2011) Petal development in Lotus japonicus. J Integ Plant Biol 53:770–782

    Article  CAS  Google Scholar 

  • Wittkopp PJ, Haerum BK, Clark AG (2008) Regulatory change underlying expression differences within and between Drosophila species. Nat Genet 40:346–350

    Article  CAS  PubMed  Google Scholar 

  • Xu Z, Cheng K, Li X, Yang J, Xu S, Cao X, Hu X, Yuan L, Ambrose M, Chen G, Mi H, Luo D (2016) Transcriptional and post-transcriptional modulation of SQU and KEW activities in the control of dorsal-ventral asymmetric flower development in Lotus japonicus. Mol Plant 9:722–736

    Article  CAS  PubMed  Google Scholar 

  • Yang X, Pang H-B, Liu B-L, Qiu Z-J, Gao Q, Wei L, Dong Y, Wang Y-Z (2012) Evolution of double positive autoregulatory feedback loops in CYC2 clade genes is associated with the origin of floral zygomorphy. Plant Cell 24:1834–1847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang X, Zhao X-G, Li CQ, Liu J, Qiu Z-J, Dong Y, Wang Y-Z (2015) Distinct regulatory changes underlying differential expression of TEOSINTE BRANCHED1-CYCLOIDEA-PROLIFERATING CELL FACTOR gene associated with petal variations in zygomorphic flower of Petrocosmea spp. of the family Gesneriaceae. Plant Physiol 169:2138–2151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu D, Kotilainen M, Pöllänen E, Mehto M, Elomaa P, Helariutta Y, Albert VA, Teeri TH (1999) Organ identity genes and modified patterns of flower development in Gerbera hybrida (Asteraceae). Plant J 17:51–62

    Article  CAS  PubMed  Google Scholar 

  • Yuan Z, Gao S, Xue DW, Luo D, Li LT, Ding SY, Yao X, Wilson ZA, Qian Q, Zhang DB (2009) RETARDED PALEA1 controls palea development and floral zygomorphy in rice. Plant Physiol 149:235–244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang W, Kramer EM, Davis CC (2010) Floral symmetry genes and the origin and maintenance of zygomorphy in a plant-pollinator mutualism. Proc Natl Acad Sci USA 107:6388-6393

  • Zhong J, Kellogg EA (2015a) Stepwise evolution of corolla symmetry in CYCLOIDEA2-like and RADIALIS-like gene expression patterns in Lamiales. Am J Bot 102:1260–1267

    Article  CAS  PubMed  Google Scholar 

  • Zhong J, Kellogg EA (2015b) Duplication and expression of CYC2-like genes in the origin and maintenance of corolla zygomorphy in Lamiales. New Phytol 205:852–868

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Università degli Studi di Pisa. We are indebted to Mariangela Salvini for phylogenetic analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio Pugliesi.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 165 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fambrini, M., Pugliesi, C. CYCLOIDEA 2 Clade Genes: Key Players in the Control of Floral Symmetry, Inflorescence Architecture, and Reproductive Organ Development. Plant Mol Biol Rep 35, 20–36 (2017). https://doi.org/10.1007/s11105-016-1005-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-016-1005-z

Keywords

Navigation